Sains Malaysiana 40(6)(2011): 631–636
Comparison of Mesa and Device Diameter Variation in
Double Wafer-Fused Multi Quantum-Well, Long-Wavelength, Vertical Cavity Surface
Emitting Lasers
(Perbandingan Variasi Diameter Peranti dan Mesa dalam Laser Pemancar Permukaan dengan Rongga Menegak dan Perigi Kuantum Berbilang yang Dilakur Wafer Secara Berganda)
P. S. Menon*, K. Kandiah, B. Y. Majlis & S. Shaari
Institute of Microengineering and Nanoelectronics (IMEN)
Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, D.E., Malaysia
Received:
25 January 2010 / Accepted: 4 March 2010
ABSTRACT
Long-wavelength vertical-cavity surface-emitting lasers (LW-VCSELs)
have profound advantages compared to traditional edge-emitting lasers offering
improved properties with respect to mode selectivity, fibre coupling, threshold currents and integration into 2D arrays or with other
electronic devices. Its commercialization is gaining momentum as the local and
access network in optical communication system expand. Numerical modeling of LW-VCSEL utilizing wafer-fused InP-based
multi-quantum wells (MQW) and GaAs-based
distributed Bragg reflectors (DBRs) is presented in this paper.
Emphasis is on the device and mesa/pillar diameter design parameter comparison
and its effect on the device characteristics.
Keywords: GaAs; InP;
mesa; multi quantum well; semiconductor laser
ABSTRAK
Laser pemancar permukaan dengan rongga menegak untuk jarak gelombang panjang (LW-VCSEL) mempunyai kelebihan yang lebih nyata berbanding laser pemancar sisi konvensional. Kelebihannya termasuklah kebolehan melakukan pemilihan mod, gandingan gentian, arus ambang yang rendah dan pengintegrasian ke dalam jujukan 2D atau sebarang peranti elektronik lain. Momentum pengkomersialannya semakin meningkat di dalam rangkaian tempatan dan capaian apabila sistem komunikasi optik semakin berkembang. Pemodelan berangka LW-VCSEL yang menggunakan perigi kuantum berbilang (MQW) berasaskan substrat InP yang terlakur wafer dan pemantul Bragg teragih (DBR) yang berasaskan substrat GaAs dipersembahkan di dalam kertas ini. Penekanan diberikan terhadap perbandingan parameter reka bentuk diameter dan mesa dan kesannya terhadap pelbagai pencirian peranti.
Kata kunci: GaAs; InP;
laser semikonduktor; mesa; perigi kuantum berbilang
REFERENCES
Babic, D.I., Piprek, J.S., Mirin, K., Margalit, R.P., Mars, N.M.,
Bowers, D.E. & Hu, J.E. 1997. Design and analysis of double-fused
1.55-μm vertical-cavity lasers. IEEE Journal of Selected Topics in
Quantum Electronics 33: 1369-1383.
Geske, J., Gan, K.G., Okuno, Y. L., Piprek, J. &. Bowers, J.E. 2004. Vertical-Cavity Surface-Emitting Laser Active Regions for Enhanced
Performance With Optical Pumping. IEEE
Journal of Quantum Electronics 40: 1155-1162.
Hofmann, W. & Amann, M.C. 2008. Long-wavelength vertical-cavity surface-emitting
lasers for high-speed applications and gas sensing. IET Optoelectronics 2:
134-142.
Kapon, Eli & Sirbu, Alexei. 2009. Power-efficient answer. Nature
Photonics 3: 27-29.
Karim, A., Piprek, J., Abraham,
P., Lofgreen, D., Chiu, Y.J. & Bowers, J.E. 2001. 1.55-μm
vertical-cavity laser arrays for wavelength-division multiplexing. IEEE
Journal of Selected Topics in Quantum Electronics 7: 178-183.
Lin, C.K., Bour, D.P., Zhu, J.,
Perez, W. H., Leary, M.H., Tandon, A., Corzine, S.W. &
Tan, M.R.T. 2003. High temperature
continuous-wave operation of 1.3- and 1.55-/spl mu/m
VCSELs with InP/air-gap DBRs. IEEE
Journal of Selected Topics in Quantum Electronics 9: 1415-1421.
Margalit, N.M., Piprek, J., Zhang, S., Babic,
D.I., Streubel,
K., Mirin, R.P., Wesselmann, J.R. & Bowers. J.E. 1997. 64°C continuous-wave operation of
1.5-μm vertical-cavity laser. IEEE Journal of Selected Topics in Quantum
Electronics 3: 359-365.
Mehta, M., Feezell, D., Buell, D.A., Jackson, A.W., Coldren, L.A. & Bowers, J.E. 2006. Electrical design optimization of single-mode
tunnel-junction-based long-wavelength VCSELs. IEEE Journal of Selected
Topics in Quantum Electronics 42: 675-682.
Nakagawa, S., Hall, E., Almuneau, G., Kim, J.K.,
Buell, D.A., Kroemer,
H. & Coldren, L.A. 2001. 1.55-μm InP-lattice-matched VCSELs with AlGaAsSb-AlAsSb DBRs. IEEE Journal on
Selected Topics in Quantum Electronics 7: 224-230.
Nishiyama, N., Caneau, C., Guryanov, G., Liu, X.S., Hu, M. & Zah, C.E. 2003. High
efficiency long wavelength VCSEL on InP grown by
MOCVD. Electronics Letters 39: 437-439.
Ohiso, Y., Okamoto, H., Iga, R., Kishi,
K. & Amano, C. 2002. Single
transverse mode operation of 1.55-μm buried heterostructure vertical-cavity surface-emitting lasers. IEEE Photonics Technology Letters 14:
738-740.
Shau, R., Ortsiefer, M., Rosskopf, J., Bohm,
G., Kohler, F. & Amann, M.C. 2001. Vertical-cavity
surface-emitting laser diodes at 1.55 μm with
large output power and high operation temperature. Electronics Letters 37:
1295-1296.
Shin, J.H., Yoo, B.S., Han,
W.S., Kwon, O.K., Ju, Y. G. & Lee, J.H. 2002.
CW operation and threshold characteristics of all-monolithic InAlGaAs 1.55 μm VCSELs
grown by MOCVD. IEEE Photonics
Technology Letters 14: 1031-1033.
SILVACOInternational. 2007. ATLAS User’s
Manual, Version 5.12.0.R. USA, SILVACOInternational Incorporated.
Syrbu, A., Iakovlev, V.P., Berseth, C.A., Dehaese, O., Rudra, A., Kapon, E., Jacquet, J., Boucart, J., Stark, C., Gaborit,
F., Sagnes, I., Harmand,
J.C. & Raj, R. 1998. 30°C CW operation of 1.52 μm InGaAsP/AlGaAs vertical
cavity lasers with in situ built-in lateral current confinement by localised fusion. Electronics Letters 34: 1744-1745.
Wilmsen, C., Temkin, H. & Coldren,
L.A. 1999. Vertical-Cavity
Surface-Emitting Lasers, United Kingdom: Cambridge University Press.
Yuen, W., Li, G.S., Nabiev, R.F., Boucart, J., Kner,
P., Stone, R.J., Zhang, D., Beaudoin, M., Zheng, T., He, C., Yu, K., Jansen, M., Worland, D.P. & Chang-Hasnain, C.J.
2000. High-performance 1.6 μm single-epitaxy top-emitting VCSEL. Electronics Letters 36: 1121-1123.
*Corresponding author; email:
susi@eng.ukm.my
|