Sains Malaysiana 40(8)(2011): 865–870
Amylose and Amylopectin in Selected Malaysian Foods and its
Relationship to Glycemic Index
(Amilosa dan
Amilopektin dalam Makanan Malaysia Terpilih dan Kaitannya dengan Indeks
Glisemik)
S. Nik Shanita*, H. Hasnah
& C.W. Khoo
Jabatan Pemakanan dan Dietetik, Fakulti
Sains Kesihatan Bersekutu, Universiti Kebangsaan Malaysia
Jalan Raja Muda Ab. Aziz, 50300
Kuala Lumpur, Malaysia
Received: 13
August 2009 / Accepted: 7 September 2010
ABSTRACT
The aim of this
study was to determine the nutrient contents and to evaluate the relationship
between amylose and amylopectin content to glycemic index of diet commonly
eaten by Malaysian. The food samples consisted of nasi
lemak, fried rice, fried rice noodle, fried macaroni, sandwich sardine,
doughnut, curry puff and roti canai with dhal. Each sample was prepared
based on standard recipe (except doughnut, roti canai with dhal and
curry puff were bought from 3 different locations) in two different cycles. Moisture,
ash, crude protein and crude fat were analyzed using proximate analysis whereas
amount of carbohydrate was calculated “by difference”. Total dietary fiber was
analyzed using AOAC 991.43. The
content of amylose and amylopectin were analyzed using colorimetric method and
calculated “by difference”, respectively. Our results showed that doughnut
contained the highest carbohydrate (49.49 ± 1.24 g/100 g) while nasi
lemak had the lowest carbohydrate (25.04 ± 0.56 g/100 g). Roti canai with
dhal had the highest total dietary fiber content (3.89 ± 0.43 g/100 g). The
highest amylose content was found in roti canai with dhal (11.75 ± 1.38%) while
highest amylopectin content was in nasi lemak (94.19 ± 0.48%). The
amylose content of tested samples ranged from 5 to 12%. In conclusion, results
showed that there was no significant relationship between the ratio of amylose
to amylopectin and glycemic index but negative trend existed which indicated
increase in amylose content will lower the glycemic index of a food.
Keywords:
Amylopectin; amylose; glycemic index
ABSTRAK
Tujuan kajian
ini dijalankan adalah untuk menentukan kandungan nutrien dan menilai hubungan
antara kandungan amilosa dan amilopektin dengan nilai indeks glisemik dalam
makanan kegemaran penduduk Malaysia. Sampel makanan terdiri daripada nasi
lemak, nasi goreng, bihun goreng, makaroni goreng, sandwic sardin, donut,
karipap dan roti canai dengan dhal. Setiap sampel dimasak berdasarkan resipi
piawai (kecuali donut, roti canai dengan dhal dan karipap dibeli daripada tiga
lokasi berlainan) pada dua kitaran berbeza. Kelembapan, abu, protein kasar dan
lemak kasar dinilai melalui analisis proksimat manakala kandungan karbohidrat
total dikira secara pembezaan. Gentian diet total ditentukan mengikut AOAC 991.43. Amilosa dan amilopektin pula dinilai
masing-masing melalui kaedah kolorimetrik dan kaedah pembezaan. Hasil kajian
menunjukkan donut mengandungi karbohidrat total tertinggi (49.49 ± 1.24 g/100
g) manakala nasi lemak mempunyai kandungan karbohidrat total yang terendah
iaitu sebanyak 25.04 ± 0.56 g/100 g. Roti canai dengan dhal mempunyai kandungan
gentian diet total paling tinggi (3.89 ± 0.43 g/100 g). Kandungan amilosa yang
tertinggi ditunjukkan dalam roti canai dengan dhal (11.75 ± 1.38%) manakala
untuk kandungan amilopektin tertinggi pula ialah nasi lemak (94.19 ± 0.48%).
Julat kandungan amilosa dalam kajian adalah di antara 5 hingga 12%.
Kesimpulannya, hasil kajian mendapati tidak terdapat hubungan signifikan di
antara nisbah amilosa kepada amilopektin dengan nilai indeks glisemik tetapi
tren negatif wujud di mana peningkatan kandungan amilosa menyebabkan penurunan
indeks glisemik dalam sesuatu makanan.
Kata kunci:
Amilopektin; amilosa; indeks glisemik
REFERENCE
AOAC. 1995. Official
Methods of Analysis. 17th Ed. Washington
D.C.: Association of Official Analytical Chemists.
Augustin, L.S.,
Franceschi, S., Jenkins, D.J.A., Kendall, C.W.C. & La Vecchia, C. 2002.
Glycemic index in chronic disease: a review. European Journal of Clinical
Nutrition 56: 1049-1071.
Barakatun Nisak,
M.Y., Ruzita, A.T. & Norimah, A.K. 2005. Glycaemic index of eight types of
commercial rice in Malaysia. Malaysia Journal of Nutrition 11(2):
151-163.
Behall, K.M.
& Hallfrisch, J. 2002. Plasma glucose and insulin reduction after
consumption of breads varying in amilose content. European Journal of
Clinical Nutrition 56: 913-920.
Behall, K.M.
& Howe, J.C. 1995. Effect of long-term consumption of amylose vs
amylopectin starch on metabolic parameters in human subjects. American Journal
of Clinical Nutrition 61: 334-340.
Behall, K.M.
& Scholfield, D.J. 2005. Food amylose content affects postprandial glucose
and insulin responses. Cereal Chemistry 82: 654-659.
Bennion, M.
& Scheule, B. 2000. Introductory Foods. 11th ed. New York: Prentice-Hall.
Chung, H.J.,
Lim, H.S., & Lim, S.T. 2006. Effect of partial gelatinization and
retrogradation on the enzymatic digestion of waxy rice starch. Journal of
Cereal Science 43: 353-359.
Eliasson, A.C.
& Gudmundsson, M. 1996. Starch: physicochemical and functional aspects.
Dlm. Carbohydrates in Food, Eliasson, A.C. (ed.) p. 503. New York:
Marcel Dekker.
FAO/WHO. 1998.
Carbohydrates in human nutrition: Report of a joint FAO/WHO expert
consultation, Rome. 14-18 April 1997. FAO Food and Nutrition Paper 66 Rome:
FAO.
Frei, M.,
Siddhuraju, P. & Becker, K. 2003. Studies on the in vitro starch
digestibility and the GI of six different indigenous rice cultivars from the
Philipines. Food Chemistry 83: 395-402.
Gagné, L. 2008.
The glycemic index and glycemic load in clinical practice. Explore 4:
66-69.
Godet, M.C.,
Tran, V. & Delagw, M.M. 1993. Molecular modeling of the specific
interactions in amylose coplexation by fatty acids. International Journal of
Biological Macromolecules 15: 11-16.
Hoover, R. &
Ratnayake, W.S. 2002. Starch characteristics of black bean, chick pea, lentil,
navy bean and pinto bean cultivars. Food Chemistry 78: 489-498.
Hoover, R. &
Sosulski, F. 1991. Composition, structure, functionality, and chemical
modification of legume starch: a review. Canadian Journal of Physiology and
Pharmacology 69: 79-92.
Hu, P., Zhao,
H., Duan, Z., Linlin, Z. & Wu, D. 2004. Starch digestibility and the
estimated glycemic score of different types of rice differing in amylose
contents. Journal of Cereal Science 40: 231-237.
Jenkins, D.J.,
Wolever, T.M., Taylor, R.H., Barker, H., Fielden, H., Baldwin, J.M., Bowling,
A.C., Newman, H.C., Jenkins, A.L. & Goff, D.V. 1981. Glycemic index of
foods: A physiological basis for carbohydrate exchange. American Journal of
Clinical Nutrition 34: 362-366.
Juan, G., Luis,
A. & David, B. 2006. Isolation and molecular characterization of Makal (Xanthosoma
yucatanensis) starch. Starch 58: 300-307.
Juliano, B.O.
1992. Structure chemistry and function of the rice grain and its fraction. Cereal
Foods World 37: 772-774.
Juliano, B.O.,
Perez, C.M. & Blakeney, A.B. 1981. International Cooperative testing on the
amylose content of milled rice. Starch 33(5): 157-162.
Kirwan, J.P.,
O’Gorman, D.J. & Cyr-Campbell, D. 2001. Effects of a moderate glycemic meal
on exercise duration and substrate utilization. Medicine & Science in
Sports & Exercise 33: 1517-1523.
Krokida, M.K.,
Oreopoulou, V. & Maroulis, Z.B. 2000. Water loss and oil uptake as a
function of frying time. Journal of Food Engineering 44: 39-46.
Kwas´niewska-Karolak,
I., Nebesny, E. & Rosicka-Kaczmarek, J. 2008. Characterization of
Amylose-lipid Complexes Derived from Different Wheat Varieties and their
Susceptibility to Enzymatic Hydrolysis. Food Science and Technology
International 14(1): 29-37.
McGrance, S.J.,
Cornell, H.J. & Rix, C.J. 1998. A simple and rapid colorimetric method for
the determination of amylose in starch products. Starch 50: 158-163.
McWilliams, M. 2001. Foods: Experimental Perspectives. 4th ed. New Jersey: Prentice-Hall.
Mohana, K.,
Asna, U. & Prasad, N.N. 2007. Effect of storage on resistant starch and
amylose content of cereal-pulse based ready-to-eat commercial products. Food
Chemistry 102: 1425-1430.
NCCFN. 2005.
Recommended nutrient intakes for Malaysia. A report of the technical working
group on nutritional guidelines. National Coordinating Committee on Food and
Nutrition. Putrajaya: Ministry of Health.
Nik Shanita, S.
2005. Pembangunan dan penentuan indeks glisemik serta jenis karbohidrat makanan
pilihan atlet ketahanan tinggi. Tesis Dr. Falsafah. Jabatan Pemakanan &
Dietetik, Universiti Kebangsaan Malaysia. (Unpublished)
Nuttall, F.Q.
1993. Perspective in diabetes. Dietary fiber in the management of diabetes. Diabetes 42: 503-508.
Radhika, G.S.,
Shanavas, S. & Moorthy, S.N. 2008. Influence of Lipids Isolated from
Soybean Seed on Different Properties of Cassava Starch. Starch 60:
485-492.
Riccardi, G.
& Rivellese, A.A. 1991. Effect of dietary fibre and carbohydrate on glucose
and lipoprotein metabolim in diabetic patients. Diabetes Care 14:
1115-1125.
Southgate,
D.A.T. 1991. Determination of food carbohydrates. London: Elsevier
Science Publishers.
Vosloo, M.C.
2005. Some factors affecting the digestion of glycaemic carbohydrates and the
blood glucose response. Journal of Family Ecology and Consumer Sciences 33:
1-9.
Yotsawimonwat,
S., Sriroth, K., Kaewvichit, S., Piyachomkwan, K., Jane, J.L. &
Sirithunyalug, J. 2008. Effect of pH on complex formation between debranched
waxy rice starch and fatty acids. International Journal of Biological
Macromolecules 43: 94-99.
Young, A.H.
1984. Fractionation of starch. In Starch: Chemistry and Technology,
Whistle, R.L., BeMiller, J.N. & Paschall, E.F. (ed.) p. 249. Orlando:
Academic Press.
*Corresponding author; e-mail: nikss@fskb.ukm.my
|