Sains Malaysiana 40(8)(2011): 903–911

 

Kesan Penambahan Protein Soya Terhadap Pengerasan & Kekuatan Mampatan Simen Brushit-HA

(Effect of Soy Protein Addition on the Setting and Compression Strength of Brushite-HA Cement)

 

Mohd Hafiz Jumal & Roslinda Shamsudin*, Pusat Pengajian Fizik Gunaan,

Fakulti Sains & Teknologi, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

 

Mohd Reusmaazran Yusoff

Kumpulan Biobahan, Jabatan Teknologi & Bahan Termaju, Agensi Nuklear Malaysia

Bangi, 43000 Kajang, Selangor, Malaysia

 

Received: 9 June 2010 / Accepted: 29 November 2010

 

ABSTRAK

Kajian ini meliputi penyediaan simen kalsium fosfat yang terdiri daripada campuran serbuk brushit (DCPD) dan hidroksiapatit (HA) yang dihasilkan secara sintesis dalam makmal. Larutan penimbal digunakan sebagai fasa cecair dan dicampurkan dengan campuran serbuk DCPD dan HA bagi menghasilkan simen tulang secara in situ dengan nisbah cecair kepada serbuk (L/P) antara 0.26 – 0.36 mL g-1. Sodium alginat dan protein soya ditambahkan ke dalam simen kalsium fosfat dan dikaji kesannya terhadap simen yang dihasilkan. Keputusan kajian menunjukkan simen kalsium fosfat dapat dihasilkan pada nisbah L/P 0.32 mlg-1 dengan penambahan 1%bt sodium alginat dan 1%bt protein soya dengan kebolehsuntikan yang maksimum (100%) dan tempoh pengerasan selama 26 min. Penambahan protein soya juga telah meningkatkan kekuatan mampatan simen tulang daripada 2.90 MPa (tanpa protein) kepada 3.98 MPa pada 1.5%bt protein. Simen kalsium fosfat-protein soya yang dihasilkan juga menunjukkan sifat kebioaktifan. Pertumbuhan apatit berlaku pada hari ke-3 selepas rendaman di dalam larutan simulasi badan (SBF) dan membesar dengan perlanjutan tempoh rendaman.

 

Kata kunci: Brushit; hidroksiapatit; kebioaktifan; kebolehsuntikan; protein soya

 

ABSTRACT

This study involved the preparation of calcium phosphate cement which consists of a mixture of brushite (DCPD) and hydroxyapatite (HA) powder synthesized in a laboratory. Buffer solution was used as liquid phase and mixed with the mixture of DCPD and HA powder to produce in-situ bone cement with liquid to powder ratio (L/P) between 0.26 and 0.36 mL g-1. Sodium alginate and soy protein was added into the calcium phosphate cement and its affect on the cement was studied. Results showed that the calcium phosphate cement could be formed with maximum injectability (100%) and setting time of 26 min at L/P ratio of 0.32 mL g-1 with addition of 1wt% sodium alginate and 1wt% protein. Addition of soy protein increased compressive strength of the bone cement from 2.90 MPa (without protein) to 3.98 MPa at 1.5wt% protein. The calcium phosphate-soy protein cement also exhibited bioactivity properties. The growth of apatite has been observed after 3 days soaking in SBF solution and growth with time.

 

Keywords: Bioactivity; brushite; hydroxyapatite; injectability; soy protein

 

 

REFERENCES

Afshar, A., Ghorban, M., Ehsani, N., Saeri, M.R. & Sorrell, C.C. 2003. Some important factors in the wet precipitation process of hydroxyapatite. Materials and Designs 24: 197-202.

Alves, H.G., Luis, A. & Carlos, P. 2008. Injectability evaluation of tricalcium phosphate bone cement. Journal of Materials Science: Materials in Medical 19: 2241-2246.

ASTM C266-08 Standard test method for time of setting of hydraulic cement paste by Gilmore Needles. http://www.astm.org/Standards/C266.htm.

Barralet, J.E., Grover, L.M. & Gbureck, U. 2004. Ionic modification of calcium phosphate cements viscosity. Part II: hypodermic injection and strength improvement of brushite cement. Biomaterials 25: 2197-2203.

Bohner, M., Gbureck, U. & Barralet J.E. 2005. Technological issues for developement of more efficient calcium phosphate bone cement: A critical assesment. Biomaterials 26: 6423-6429.

Bohner, M., Merkle, H.P. & Lemaitre, J. 2000. In vitro aging of a calcium phosphate cement. Journal of Materials Science: Materials in Medicine 11: 155-162.

Cama, G., Barberis, F., Botter, R., Cirillo, P., Capurro, M., Quarto, R., Scaglione, S., Finocchio, E., Mussi, V. & Valbusa, U. 2009. Preparation and properties of macroporous brushite bone cements. Acta Biomaterialia 5: 2161-2168.

Charriere, E., Terazzoni, S., Pittet, C., Mordasini, Ph., Dutoit, M., Lemaitre, J. & Zysset, Ph. 2001. Mechanical characterization of brushite and hydroxyapatite cements. Biomaterials 22: 2937-2945.

Chauhan, S., Hofmann, M.P. & Shelton, R.M. 2006. Effect of protein addition on the setting behaviour of a calcium phosphate cement. Key Engineering Materials 309-311: 841-844.

Fathi, M.H., Hanifi, A. & Mortazavi, A. 2007. Preparation and bioactivity evaluation of bone-like hydroxyapatite nanopowder. Journal of Materials Processing Technology 202: 536-542.

Guo, H., Su, J., Wei, J., Kong, H. & Liu, C. 2009. Biocompatibility and osteogenicity of degradable Ca-deficient hydroxyapatite scaffolds from calcium phosphate cement for bone tissue engineering. Acta Biomaterialia 5: 268-278.

Han, B., Ma, P., Zhang, L., Yin, Y., Yao, K., Zhang, F., Zhang, Y., Li, X. & Nie, W. 2009. β-TCP/MCPM-based premixed calcium phosphate cements. Acta Biomaterialia 5: 3165-3177.

Khairoun, I., Boltong, M.G., Driessens, F.C.M. & Planell, J.A. 1998. Some factors controlling the injectability of calcium phosphate bone cements. Journal of Materials Science: Materials in Medicine 9: 425-8.

Kokubu, T. & Takadama, H. 2006. How useful is SBFin predicting in vivo bone bioactivity? Biomaterials 27: 2907-2915.

Wan Khartini Wan Abdul Khodir. 2008. Penyediaan kalsium fosfat-polietilenaimina. Tesis Sarjana, Fakulti Sains & Teknologi, Universiti Kebangsaan Malaysia.

Xiang, Z.K., Guo, M.M., Hua, Y.F., Cao, D. & Zhang, C.M. 2008. Enzymatic preparation of immunomodulating hydrolysates from soy proteins. Bioresource Technology 99: 8873-8879.

Xu, H.H.K., Weir, M.D., Burguera, E.F. & Fraser, A.M. 2006. Injectable and macroporous calcium phosphate cement scaffold. Biomaterials 27: 4279-4287

Yong-Bin Fan & Xiao-Ying Lu. 2008. A study of apatite formation on natural nano hydroxyapatite/chitosan composite in simulated body fluid. Front. Materials Science China 2(1): 91-94.

 

*Corresponding author; email: linda@ukm.my

 

 

previous