Sains
Malaysiana 41(10)(2012): 1211–1216
Optimum
Conditions for the Production of Polyhydroxybutyrate from Cassava
Wastewater
by the Newly Isolated Cupriavidus sp. KKU38
(Keadaan Optimum untuk Penghasilan Polihidroksibutrat daripada Air
Buangan
Cassava menggunakan Isolat Baru Cupriavidus sp. KKU38)
S. Sangyoka*
Program in Environmental Science, Faculty of Science and
Technology
Phibulsongkram Rajabhat University, Phitsanulok, 65000
Thailand
N. Poomipuk
Department of Biotechnology, Faculty of Technology, Khon
Kaen University, Khon Kaen, 40000 Thailand
A. Reungsang
Fermentation Research Center for Value Added Agricultural
Products
Faculty of Technology, Khon Kaen University, Khon Kaen, 40002
Thailand
Received: 30 September 2011 / Accepted: 18 June 2012
ABSTRACT
The Cassava starch manufacturing wastewater (CSW)
was used as a substrate to produce polyhydroxybutyrate (PHB)
by Cupriavidus sp. KKU38.
The acidogenic fermentation process of CSW was first conducted to
obtain volatile fatty acids (VFAs), which are more efficient
in PHB production than raw CSW.
The effect on substrate concentration and nutrients, i.e. nitrogen and
phosphorus concentrations, by means of chemical oxygen demand: nitrogen: phosphorus
ratio (COD:N:P ratio) variation was
investigated. The results indicated that PHB production from fermented CSW by Cupriavidus sp. KKU38 was optimized at the soluble COD:N:P ratio of 100:0.5:11. This ratio gave the maximum PHB content
and yield of 85.53% and 0.31 g PHB/g COD consumed,
respectively. By using the proposed PHB production process, the
potential to produce 0.19 kg of PHB from 1.0 kg of soluble chemical
oxygen demand (sCOD) contained in CSW was
exhibited. The relatively high COD removal efficiency of
73.82% at the optimal condition could be achieved, which demonstrated the
concept of water quality improvements alongside the production of the
value-added by-product, PHB.
Keywords: Cassava wastewater; Cupriavidus sp. KKU38; polyhydroxybutyrate (PHB)
ABSTRAK
Air buangan daripada penghasilan kanji Cassava (CSW)
telah digunakan sebagai substrat untuk menghasilkan polihidroksibutrat (PHB)
menggunakan Cupriavidus sp. KKU38.
Proses fermentasi asidogenik CSW dijalankan pada peringkat
awal untuk mendapatkan asid lemak meruap (VFAs)
yang lebih efisien dalam penghasilan PHB berbanding CSW mentah.
Kesan kepekatan substrat dan nutrien iaitu kepekatan nitrogen dan fosforus
menggunakan permintaan oksigen kimia: nitrogen: nisbah fosforus (nisbah COD:N:P) telah dikaji. Hasil kajian menunjukkan bahawa
penghasilan PHB daripada fermentasi CSW melalui Cupriavidus sp. KKU38
telah dioptimumkan pada nisbah COD:N:P,
100:0.5:11. Nisbah ini memberikan masing-masing kandungan dan
hasilan PHB 85.53% dan 0.31 g PHB/g COD yang digunakan. Dengan menggunakan proses penghasilan PBH ini,
potensi untuk menghasilkan 0.19 kg PHB daripada 1.0 kg permintaan
oksigen kimia terlarut (sCOD) yang terkandung dalam CSW telah
ditunjukkan. Kecekapan pembuangan COD yang tinggi iaitu 73.82%
pada keadaan optimum telah dapat dicapai. Ini menunjukkan
bahawa konsep peningkatan kualiti air bersama penghasilan PHB dengan
nilai tambah telah dapat dicapai.
Kata kunci: Air buangan Cassava; Cupriavidus sp. KKU38; polihidroksibutrat (PHB)
REFFERENCE
Anderson,
A.J. & Dawes, E.A. 1990. Occurrence, metabolism,
metabolic role and industrial uses of bacterial polyhydroxyalkanoates. Microbial.
Rev. 54: 450-472.
Bengtsson, S., Alan, W.A., Magnus, C.A. & Welander, T.
2008. Production of polyhydroxyalkanoates by activated sludge treating
a paper mill wastewater. Bioresource. Technol. 99: 509-516.
Choi,
J. & Lee, S.Y. 1999. Factors affecting the economics of
polyhydroxyalkanoates production by bacterial fermentation. Appl.
Microbiol. Biotechno. 51: 13-21.
Dionisi, D., Majone, M., Papa, V. & Beccari, M. 2004. Biodegradable polymers from organic acids by using activated sludge enriched by
aerobic periodic feeding. Biotechnol. Bioeng. 85:
569-579.
Du,
G., Chen, J., Yu, J. & Lun, S. 2001. Continuous
production of poly-3-hydroxybutyrate by Ralstonia eutropha in a
two-stage culture system. J. Biotechnol. 88:
59-65.
Jung, Y.M., Park, J.S. & Lee, Y.H. 2000. Metabolic engineering of Alcaligenes eutrophus through the
transformation of cloned phbCAB genes for the investigation of the regulatory
mechanism of polyhydroxyalkanoate biosynthesis. Enzyme. Microbiol. Technol. 26: 201-208.
Kemavongse,
K., Prasertsan, P., Upaichit, A. & Methacanon, P. 2008. Poly-β-hydroxylkanoate
production by halotolerant Rhodobacter sphaeroides U7. World J.
Microbiol. Biotechnol. 24: 2073-2085.
Lageveen, R.G., Huisman, G.W., Preusting, H., Ketelaar, P.,
Eggink, G. & Witholt, B. 1988. Formation of polyesters by Pseudomonas
oleovorans: Effect of substrates on formation and composition of poly-(R)-3-hydroxyalkanoates
and poly-(R)-3-hydroxyalkenoates. Appl. Environ. Microbiol. 54: 2924-2932.
Madison,
L.L. & Huisman, G.W. 1999. Metabolic engineering of poly
(3-hydroxyalkanoates) from DNA to plastic. Microbiol. Mol. Biol. Rev. 63: 21-53.
Sindhu, R., Ammu, B., Bionod, P. Deepthi, S.K.,
Rammachandran, K.B., Soccol, C.R. & Pandey, A. 2011. Production and characterization of poly-3-hydroxybutyrate from crude glucerol
by Bacillus sphaericus NII 0838 and improving its thermal properties by
Blending with Other Polymers. Braz. Arch. Biol. Technol. 54: 783-794.
Yu,
J. 2001. Production of PHB from starchy wastewater via
organic acids. J. Biotechnol. 86: 105-112.
*Corresponding
author; e-mail: suksaman@hotmail.com