Sains
Malaysiana 41(10)(2012): 1245–1251
Effects
of Titration Parameters on the Synthesis of Molybdenum Oxides Based Catalyst
(Kesan Parameter Penitratan terhadap Sintesis Mangkin Molibdenum
Oksida)
D.D. Suppiah*, F.A. Hamid, M.G. Kutty
& S.B. Abd. Hamid
Combinatorial Technology and Catalysis Research Centre
(COMBICAT)
Level 3, Blok A, Institute of Postgraduate Studies,
University Malaya
50603 Kuala Lumpur, Malaysia
Received: 11 August 2011 / Accepted: 4 May 2012
ABSTRACT
Molybdenum oxides catalysts are extensively used in various
selective oxidation reactions. In this work, controlled precipitation method
was used to synthesise molybdenum oxides. The effects of various titration
parameters on the precipitate growth rate and structure throughout catalyst
synthesis were investigated. The titration parameters varied for this study
were molybdates (ammonium heptamolybdate) concentration, precipitation agent
(HNO3) concentration, precipitating agent rate of addition
and temperature of synthesis. X-Ray diffraction (XRD)
and Field Emission Scanning Electron Microscope (FESEM)
were used to characterize the catalysts. This study highlights the
significant effects of the titration parameters varied on the supersaturation
of the solution therefore yielding precipitate with different morphology. It
was observed that the temperature played the major role followed by molybdate
concentration in the formation of the bulk catalyst. Supramolecular structure
(Mo36O112) was observed at lower temperature
(30ºC) and lower molybdate concentration (0.07 M, 0.10 M) while at higher
temperature (50ºC) and higher molybdate concentration(0.14 M) hexagonal (h-MoO3)
phase structure was formed. Fast rate of addition and high concentration of
precipitating agent affected the solution equilibrium leading to unclear
inflection point (supersaturation point) at the titration curve.
Keywords: Catalyst; molybdenum oxides; precipitation; titration
ABSTRAK
Mangkin molibdenum oksida digunakan secara meluas dalam pelbagai
tindak balas pengoksidaan terpilih. Kaedah pemendapan yang terkawal telah digunakan
dan pelbagai parameter penitratan telah digunakan seperti kepekatan molibdat
(ammonia heptamolybdate), kepekatan agen pemendapan (HNO3),
kadar penambahan agen pemendapan dan suhu sintesis. Kesan setiap parameter
terhadap kadar pertumbuhan dan struktur zarah semasa sintesis mangkin telah
dikaji. Pembelauan sinar-X (XRD) dan Mikroskop Pancaran
Medan Elektron Imbasan (FESEM) digunakan untuk mengenal pasti
ciri-ciri mangkin. Berdasarkan kajian yang telah dibuat, perkara utama yang
perlu diberi perhatian adalah kesan setiap parameter penitratan terhadap
keterlarutan yang menghasilkan pemendapan pepejal dengan morfologi berbeza.
Suhu memainkan peranan paling penting diikuti kepekatan molibdat dalam
pembentukan mangkin pukal. Struktur supramolekular (Mo36O112)
telah diperhatikan pada suhu rendah (30ºC) dan kepekatan molibdat rendah (0.07
M, 0.10 M) sedangkan pada suhu tinggi (50ºC) dan kepekatan molibdat tinggi
(0.14 M) struktur hexagonal (h-MoO3) telah dihasilkan. Kadar
penambahan yang cepat dan kepekatan tinggi agen penitratan mempengaruhi
keseimbangan larutan dan mengakibatkan titik keterlarutan yang tak jelas.
Kata kunci: Mangkin; molibdenum oksida;
pemendapan; penitratan
REFERENCES
Abd Hamid, S.B., Othman, D., Abdullah, N.,
Timpe, O., Knobl, S., Niemeyer, D., Wagner, J., Su, D. & Schogl, R. 2003.
Structurally complex molybdenum oxide model catalysts for the selective
oxidation of propene. Topics in Catalysis 24(1): 87-95.
Behrens, M., Brennecke, D., Girgsdies, F.,
Kißner, S., Trunschke, A., Nasrudin, N., Zakaria, S., Idris, N.F., Hamid,
S.B.A., Kniep, B., Fischer, R., Busser, W., Muhler, M. & Schlögl, R. 2011. Understanding
the complexity of a catalyst synthesis: Co-precipitation of mixed Cu,Zn,Al
hydroxycarbonate precursors for Cu/ZnO/Al2O3 catalysts investigated by
titration experiments. Applied Catalysis A: General 392(1-2): 93-102.
Bohne, Y., Shevchenko, N., Prokert, F., von Borany, J.,
Rauschenbach, B. & Möller, W. 2005. In situ characterization of phase
formation during high-energy oxygen ion implantation in molybdenum. Nuclear
Instruments and Methods in Physics Research Section B: Beam Interactions with
Materials and Atoms 240(1-2): 157-161.
Cavalleri,
M., Hermann, K., Guimond, S., Romanyshyn, Y., Kuhlenbeck, H. & Freund, H.J.
2007. X-ray spectroscopic fingerprints of reactive oxygen sites at the MoO3(0 1
0) surface. Catalysis Today 124(1-2): 21-27.
Chang,
Z., Song, Z., Liu, G., Rodriguez, J.A. & Hrbek, J. 2002. Synthesis,
electronic and chemical properties of MoOx clusters on Au(1 1 1). Surface
Science 512(1-2): L353-L360.
Chow,
G. & Kurihara, L.K. 2002. Chemical synthesis and processing of
nanosructured powders and films. In: Koch, C.C. (ed). Nanostructured
materials processing, properties and potential, New York: William Andrew
Publishing. pp.3-50.
Cronin,
L., Kögerler, P. & Müller, A. 2000. Controlling growth of novel solid-state
materials via discrete molybdenum-oxide-based building blocks as synthons. Journal
of Solid State Chemistry 152(1): 57-67.
Dieterle,
M., Mestl, G., Jäger, J., Uchida, Y., Hibst, H. & Schlögl, R. 2001. Mixed
molybdenum oxide based partial oxidation catalyst: 2. Combined X-ray
diffraction, electron microscopy and Raman investigation of the phase stability
of (MoVW)5O14-type oxides. Journal of Molecular Catalysis A: Chemical 174(1-2):
169-185.
Dillon,
C.J., Holles, J.H., Davis, R.J., Labinger, J.A. & Davis, M.E. 2003.
Asubstrate-versatile catalyst for the selective oxidation of light alkanes: II.
Catalyst characterization. Journal of Catalysis 218(1): 54-66.
Duc,
M., Carteret, C., Thomas, F., & Gaboriaud, F. 2008. Temperature effect on
the acid-base behaviour of Na-montmorillonite. Journal of Colloid and
Interface Science 327(2): 472-476.
Feng,
B., Yong, A.K. & An, H. 2007. Effect of various factors on the particle
size of calcium carbonate formed in a precipitation process. Materials
Science and Engineering: A 445-446(0):170-179.
Haddad,
N., Bordes-Richard, E. & Barama, A. 2009. MoOx-based catalysts for the
oxidative dehydrogenation (ODH) of ethane to ethylene: Influence of vanadium
and phosphorus on physicochemical and catalytic properties. Catalysis Today 142(3-4):
215-219.
Hu,
E.L. & Shaw, D.T. 1999. Synthesis and Assembly. In: R.W. Siegel, Hu, E. and
Roco, M.C. (ed). Nanostructure Science and Technology A Worldwide Study,
pp. 15-34.
Mahajan,
S.S., Mujawar, S.H., Shinde, P.S., Inamdar, A.I. & Patil, P.S. 2008.
Concentration dependent structural, optical and electrochromic properties of
MoO3 thin films. International Journal of Electrochemical Science 3(8): 953-960
Rodríguez-Paéz,
J.E., Caballero, A.C., Villegas, M., Moure, C., Durán, P. & Fernández, J.F.
2001. Controlled precipitation methods:formation mechanism of ZnO nanoparticles. Journal of the European Ceramic Society 21(7): 925-930.
Song,
J., Ni, X., Gao, L. & Zheng, H. 2007. Synthesis of metastable h-MoO3 by
simple chemical precipitation. Materials Chemistry and Physics 102(2-3):
245-248.
Ueda,
W., Sadakane, M. & Ogihara, H. 2008. Nano-structuring of complex metal
oxides for catalytic oxidation. Catalysis Today 132(1-4): 2-8.
Ungár,
T. 2004. Microstructural parameters from X-ray diffraction peak broadening. Scripta
Materialia 51(8): 777-781.
Wagner,
J.B., Abd Hamid, S.B., Othman, D., Timpe, O., Knobl, S., Niemeyer, D., Su, D.S.
& Schlögl, R. 2004. Nanostructuring of binary molybdenum oxide catalysts
for propene oxidation. Journal of Catalysis 225(1): 78-85.
Wang,
S., Zhang, Y., Ma, X., Wang, W., Li, X., Zhang, Z. & Qian, Y. 2005.
Hydrothermal route to single crystalline α-MoO3 nanobelts and hierarchical
structures. Solid State Communications 136(5): 283-287.
Yu,
J., Lei, M. & Cheng, B. 2004. Facile preparation of monodispersed calcium
carbonate spherical particles via a simple precipitation reaction. Materials
Chemistry and Physics 88(1): 1-4.
Yu,
S., Sun, C.-J. & Chow, G.-M. 2007. Chemical synthesis of nanostructured
particles and films. In: C.K. Carl (ed). Nanostructured Materials (2nd ed):
3-46. Norwich, New York: William Andrew Publishing.
Zhang,
R., Ma, J., Li, J., Jiang, Y. & Zheng, M. 2011. Effect of pH, temperature
and solvent mole ratio on solubility of disodium 5’-guanylate in water +
ethanol system. Fluid Phase Equilibria 303(1): 35-39.
*Corresponding
author; email: d_devi10@yahoo.com