Sains Malaysiana 41(10)(2012): 1271–1279
Stagnation-point
Flow and Mass Transfer with Chemical Reaction Past a Permeable
Stretching/Shrinking Sheet in a Nanofluid
(Aliran Titik Genangan dan Pemindahan Jisim dengan Tindak Balas Kimia Terhadap Helaian
Meregang / Mengecut Telap dalam Nanobendalir)
Natalia C. Rosca, Teodor Grosan & Ioan Pop*
Faculty of Mathematics and Computer Science, Babes-Bolyai University,
400084 Cluj-Napoca, Romania
Received: 19 April 2012 / Accepted: 15 May 2012
ABSTRACT
A numerical study has been conducted to investigate the steady
forced convection stagnation point-flow and mass transfer past a permeable
stretching/shrinking sheet placed in a copper (Cu)- water based nanofluid. The system of partial differential equations is
transformed, using appropriate transformations, into two ordinary differential
equations, which are solved numerically using bvp4c function from Matlab. The results are obtained for the reduced
skin-friction and reduced Sherwood number as well as for the velocity and
concentration profiles for some values of the governing parameters. These
results indicate that dual solutions exist for the shrinking sheet case (λ
< 0). It is shown that for a regular fluid (f = 0) a very good agreement
exists between the present numerical results and those reported in the open
literature.
Keywords: Mass transfer; nanofluid;
permeable sheet; stretching/shrinking sheet
REFERENCES
Bachok, N., Ishak, A. &
Pop, I. 2010a. Boundary-layer
flow of nanofluids over a moving surface in a flowing
fluid. International Journal of Thermal Sciences 49: 1663-1668.
Bachok, N., Ishak, A., Nazar R. & Pop I.
2010b. Flow and heat transfer at a general three-dimensional stagnation point
in a nanofluid. Physica B 405: 4914-4918.
Bhattacharyya, K. 2011.
Dual solutions in boundary layer stagnation-point flow and mass transfer with
chemical reaction past a stretching/shrinking sheet. Int. Comm. Heat Mass
Transfer 38: 917-922.
Brinkman, H.C. 1952. The viscosity of concentrated suspensions and solutions. Journal
of Chemical Physics 20: 571-581.
Buongiorno, J.
2006. Convective transport in nanofluids, ASME J. Heat Transfer 128: 240-250.
Choi, S.U.S. 1995.
Enhancing thermal conductivity of fluids with nanoparticles. ASME
Fluids Engng. Division 231: 99-105.
Crane, L.J. 1970. Flow past a stretching plate. J. Appl. Math.
Phys. (ZAMP) 21: 645-647.
Das, S.K., Choi, S.U.S., Yu, W. & Pradet, T. 2007. Nanofluids: Science and Technology, New Jersey: Wiley,
pp. 20.
Ding, Y., Chen, H. Wang,
L., Yang, C.-Y., He, Y., Yang, W., Lee, W.P., Zhang,
L. & Huo, R. 2007. Heat transfer intensification
using nanofluids. KONA 25:
23-38.
Eagen, J., Rusconi,
R., Piazza, R. & Yip, S. 2010. The classical nature of
thermal conduction in nanofluids. ASME J.
Heat Transfer 132: 102402.
Fan, J.,
& Wang, L. 2011. Review of heat conduction in nanofluids. ASME J. Heat Transfer 133: 040801.
Fang, T.
2008. Boundary
layer flow over a shrinking sheet with power law velocity. Int. J.
Heat Mass Trans. 51: 5838-5843.
Fang, T.,
Liang, W. & Lee, C.F. 2008. A new solution branch for the Blasius equation-a shrinking sheet problem. Comput. Math. Appl. 56: 3088-3095.
Fang, T., Zhang, J. &
Yao, S. 2009. Viscous flow over an unsteady shrinking sheet
with mass transfer. Chin. Phys. Lett. 26: 014703.
Goldstein, S. 1965. On
backward boundary layers and flow in converging passages. J. Fluid Mech. 21:
33-45.
Gupta, P.S. & Gupta,
A.S. 1977. Heat and mass transfer on a stretching sheet with suction and
blowing. Can. J. Chem. Eng. 55: 744-746.
Ishak, A., Lok, Y.Y. &
Pop, I. 2010. Stagnation-point
flow over a shrinking sheet in a micropolar fluid, Chem.
Eng. Commun. 197:
1417-1427.
Kakaç, S. & Pramuanjaroenkij,
A. 2009. Review
of convective heat transfer enhancement with nanofluids, Int. J. Heat Mass Transfer 52: 3187-3196.
Khan,
W.A. & Pop, I. 2010. Boundary-layer flow of a nanofluid past a
stretching sheet, Int J Heat Mass Transfer 53:
2477-2483.
Lee, J.H., Lee, S.H., Choi,
C.J., Jang, S.P. & Choi, S.U.S. 2010. A review of thermal conductivity data, mechanics and models for nanofluids. Int. J. Micro-Nano Scale Transport 1:
269-322.
Miklavčič, M. & Wang, C.Y. 2006. Viscous flowdue a shrinking sheet. Q. Appl. Math. 64: 283-290.
Oztop, H.F. & Abu-Nada, E. 2008. Numerical study of natural
convection in partially heated rectangular enclosures filled with nanofluids. International Journal of Heat and Fluid Flow 29: 1326-1336.
Shampine, L.F., Reichelt, M.W. & Kierzenka, J. 2010. Solving boundary value problems for
ordinary differential equations in Matlab with bvp4c
(http://www.mathworks.com/ bvp_ tutorial).
Sparrow, E.M. &
Abraham, J.P. 2005. Universal solutions
for the streamwise variation of the temperature of a
moving sheet in the presence of a moving fluid. Int. J. Heat Mass Transfer 48:
3047-3056.
Tiwari, R.K. & Das, M.K. 2007. Heat transfer augmentation in a
two-sided lid-driven differentially heated square cavity utilizing nanofluids. International Journal of Heat and Mass
Transfer 50: 2002-2018.
Wang, C.Y. 2008. Stagnation
flow towards a shrinking sheet. Int. J. Nonlinear Mech. 43:
377-382.
Wang, X.-Q.
& Mujumdar, A.S. 2008. A review on nanofluids-part I: Theoretical and numerical
investigations. Brazilian Journal of Chemical Engineering 25:
613-630.
Wong, K.F.V. & Leon, O.D. 2010.
Applications of nanofluids: current and future, Adv.
Mech. Eng. 2010: 519659, 11 p.
Yacob, N.A. Ishak, A. & Pop, I. 2011. Falkner-Skan problem for a static or moving wedge in nanofluids, Int.
J. Thermal Sci. 50: 133-139.
*Corresponding
author; email: popm.ioan@yahoo.co.uk
|