Sains Malaysiana 41(10)(2012): 1271–1279

 

Stagnation-point Flow and Mass Transfer with Chemical Reaction Past a Permeable Stretching/Shrinking Sheet in a Nanofluid

(Aliran Titik Genangan dan Pemindahan Jisim dengan Tindak Balas Kimia Terhadap Helaian

Meregang / Mengecut Telap dalam Nanobendalir)

 

Natalia C. Rosca, Teodor Grosan & Ioan Pop*

Faculty of Mathematics and Computer Science, Babes-Bolyai University,

400084 Cluj-Napoca, Romania

 

Received: 19 April 2012 / Accepted: 15 May 2012

 

ABSTRACT

A numerical study has been conducted to investigate the steady forced convection stagnation point-flow and mass transfer past a permeable stretching/shrinking sheet placed in a copper (Cu)- water based nanofluid. The system of partial differential equations is transformed, using appropriate transformations, into two ordinary differential equations, which are solved numerically using bvp4c function from Matlab. The results are obtained for the reduced skin-friction and reduced Sherwood number as well as for the velocity and concentration profiles for some values of the governing parameters. These results indicate that dual solutions exist for the shrinking sheet case (λ < 0). It is shown that for a regular fluid (f = 0) a very good agreement exists between the present numerical results and those reported in the open literature.

 

Keywords: Mass transfer; nanofluid; permeable sheet; stretching/shrinking sheet

REFERENCES

Bachok, N., Ishak, A. & Pop, I. 2010a. Boundary-layer flow of nanofluids over a moving surface in a flowing fluid. International Journal of Thermal Sciences 49: 1663-1668.

Bachok, N., Ishak, A., Nazar R. & Pop I. 2010b. Flow and heat transfer at a general three-dimensional stagnation point in a nanofluid. Physica B 405: 4914-4918.

Bhattacharyya, K. 2011. Dual solutions in boundary layer stagnation-point flow and mass transfer with chemical reaction past a stretching/shrinking sheet. Int. Comm. Heat Mass Transfer 38: 917-922.

Brinkman, H.C. 1952. The viscosity of concentrated suspensions and solutions. Journal of Chemical Physics 20: 571-581.

Buongiorno, J. 2006. Convective transport in nanofluids, ASME J. Heat Transfer 128: 240-250.

Choi, S.U.S. 1995. Enhancing thermal conductivity of fluids with nanoparticles. ASME Fluids Engng. Division 231: 99-105.

Crane, L.J. 1970. Flow past a stretching plate. J. Appl. Math. Phys. (ZAMP) 21: 645-647.

Das, S.K., Choi, S.U.S., Yu, W. & Pradet, T. 2007. Nanofluids: Science and Technology, New Jersey: Wiley, pp. 20.

Ding, Y., Chen, H. Wang, L., Yang, C.-Y., He, Y., Yang, W., Lee, W.P., Zhang, L. & Huo, R. 2007. Heat transfer intensification using nanofluids. KONA 25: 23-38.

Eagen, J., Rusconi, R., Piazza, R. & Yip, S. 2010. The classical nature of thermal conduction in nanofluids. ASME J. Heat Transfer 132: 102402.

Fan, J., & Wang, L. 2011. Review of heat conduction in nanofluids. ASME J. Heat Transfer 133: 040801.

Fang, T. 2008. Boundary layer flow over a shrinking sheet with power law velocity. Int. J. Heat Mass Trans. 51: 5838-5843.

Fang, T., Liang, W. & Lee, C.F. 2008. A new solution branch for the Blasius equation-a shrinking sheet problem. Comput. Math. Appl. 56: 3088-3095.

Fang, T., Zhang, J. & Yao, S. 2009. Viscous flow over an unsteady shrinking sheet with mass transfer. Chin. Phys. Lett. 26: 014703.

Goldstein, S. 1965. On backward boundary layers and flow in converging passages. J. Fluid Mech. 21: 33-45.

Gupta, P.S. & Gupta, A.S. 1977. Heat and mass transfer on a stretching sheet with suction and blowing. Can. J. Chem. Eng. 55: 744-746.

Ishak, A., Lok, Y.Y. & Pop, I. 2010. Stagnation-point flow over a shrinking sheet in a micropolar fluid, Chem. Eng. Commun. 197: 1417-1427.

Kakaç, S. & Pramuanjaroenkij, A. 2009. Review of convective heat transfer enhancement with nanofluids, Int. J. Heat Mass Transfer 52: 3187-3196.

Khan, W.A. & Pop, I. 2010. Boundary-layer flow of a nanofluid past a stretching sheet, Int J Heat Mass Transfer 53: 2477-2483.

Lee, J.H., Lee, S.H., Choi, C.J., Jang, S.P. & Choi, S.U.S. 2010. A review of thermal conductivity data, mechanics and models for nanofluids. Int. J. Micro-Nano Scale Transport 1: 269-322.

Miklavčič, M. & Wang, C.Y. 2006. Viscous flowdue a shrinking sheet. Q. Appl. Math. 64: 283-290.

Oztop, H.F. & Abu-Nada, E. 2008. Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. International Journal of Heat and Fluid Flow 29: 1326-1336.

Shampine, L.F., Reichelt, M.W. & Kierzenka, J. 2010. Solving boundary value problems for ordinary differential equations in Matlab with bvp4c (http://www.mathworks.com/ bvp_ tutorial).

Sparrow, E.M. & Abraham, J.P. 2005. Universal solutions for the streamwise variation of the temperature of a moving sheet in the presence of a moving fluid. Int. J. Heat Mass Transfer 48: 3047-3056.

Tiwari, R.K. & Das, M.K. 2007. Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. International Journal of Heat and Mass Transfer 50: 2002-2018.

Wang, C.Y. 2008. Stagnation flow towards a shrinking sheet. Int. J. Nonlinear Mech. 43: 377-382.

Wang, X.-Q. & Mujumdar, A.S. 2008. A review on nanofluids-part I: Theoretical and numerical investigations. Brazilian Journal of Chemical Engineering 25: 613-630.

Wong, K.F.V. & Leon, O.D. 2010. Applications of nanofluids: current and future, Adv. Mech. Eng. 2010: 519659, 11 p.

Yacob, N.A. Ishak, A. & Pop, I. 2011. Falkner-Skan problem for a static or moving wedge in nanofluids, Int. J. Thermal Sci. 50: 133-139.

 

*Corresponding author; email: popm.ioan@yahoo.co.uk

 

 

previous