Sains Malaysiana 41(12)(2012): 1635–1642
Parameter
Estimation of Stochastic Differential Equation
(Penganggaran Parameter Persamaan Pembeza Stokastik)
Haliza Abd. Rahman*, Arifah Bahar & Norhayati Rosli
Department of Mathematical Sciences, Faculty of Science, Universiti
Teknologi Malaysia
81310 Skudai, Johor, Malaysia
Madihah Md. Salleh
Department of Biotechnology Industry, Faculty of Biosciences
and Bioengineering
Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
Received: 11 January 2011 / Accepted: 21 July 2012
ABSTRACT
Non-parametric modeling is a method which relies
heavily on data and motivated by the smoothness properties in estimating
a function which involves spline and non-spline approaches. Spline approach
consists of regression spline and smoothing spline. Regression spline with
Bayesian approach is considered in the first step of a two-step method in
estimating the structural parameters for stochastic differential equation (SDE).
The selection of knot and order of spline can be done heuristically based on
the scatter plot. To overcome the subjective and tedious process of selecting
the optimal knot and order of spline, an algorithm was proposed. A single
optimal knot is selected out of all the points with exception of the first and the
last data which gives the least value of Generalized
Cross Validation (GCV) for each order of spline. The use is
illustrated using observed data of opening share prices of Petronas Gas Bhd.
The results showed that the Mean Square Errors (MSE) for stochastic model
with parameters estimated using optimal knot for 1,000, 5,000 and 10,000 runs
of Brownian motions are smaller than the SDE models with estimated parameters using
knot selected heuristically. This verified the viability of the two-step method
in the estimation of the drift and diffusion parameters of SDE with an improvement
of a single knot selection.
Keywords: Bayesian approach; regression spline; stochastic
differential equation; truncated power series basis
ABSTRAK
Permodelan tak-berparameter adalah satu kaedah
yang sangat bergantung kepada data dan dimotivasi oleh ciri kelicinan dalam
menganggar fungsi yang melibatkan pendekatan splin dan bukan-splin. Pendekatan spline terdiri
daripada splin regresi dan splin pelicinan. Pendekatan
pertama dengan kaedah Bayesian digunakan dalam langkah pertama untuk kaedah
dua-langkah bagi menganggar parameter struktur persamaan pembeza stokastik (SDE). Pemilihan buku dan tertib splin boleh dilakukan secara heuristik
berdasarkan rajah. Untuk mengatasi proses pemilihan bilangan buku dan
tertib splin yang subjektif dan memakan masa, satu prosedur penyelesaian
dikemukakan. Knot tunggal terbaik dengan nilai pengesahan silang teritlak (GCV)
minimum dipilih daripada semua titik kecuali data pertama dan terakhir.
Penggunaannya ditunjukkan menggunakan data cerapan saham pembukaan Petronas Gas
Bhd. Hasil kajian menunjukkan nilai min ralat kuasadua bagi model stokastik
yang menggunakan knot tunggal terbaik sebagai penganggaran parameter bagi
larian gerakan Brown 1,000, 5,000 dan 10,000 adalah lebih kecil berbanding
model stokastik dengan parameter dianggar menggunakan knot yang dipilih secara
heuristik. Ini mengesahkan kebolehjayaan kaedah dua-langkah
dalam menganggar parameter hanyut dan jerap SDE dengan menambahbaik
kaedah pemilihan buku tunggal.
Kata kunci: Basis siri kuasa terpangkas;
pendekatan Bayesan; persamaan pembeza stokastik; regresi splin
REFERENCES
Allen, E. 2007. Modelling with Itô Stochastic Differential Equations. New
York: Springer-Verlag.
Brunel, N. 2008. Parameter estimation of ODE’s via nonparametric estimators. Electronic Journal of Statistics 21: 1242-1267.
Budiantara, I.N. 2001. Aplikasi spline
estimator terbobot. Jurnal Teknik Industri 3(2): 57-62.
Calderon, C.P., Martinez, J.G., Carrol, R.J. & Sorensen,
D.C. 2010. P-Splines using derivative information. Multiscale
Modelling and Simulation 8(4): 1562-1580.
Eubank, R. L. 1988. Spline Smoothing and Non parametric Regression, New York: Marcel-Dekker.
Hunt, D.L. & Li, C-S. 2006. Aregression spline model for
developmental toxicity data. Toxicological Sciences 92(1): 329-334.
Lang, S. & Brezger, A. 2004. Bayesian P-Splines. Journal of Computational and
Graphical Statistics 13: 183-212.
Leathwick, J.R., Rowe, D., Richardson,
J., Elith, J. & Hastie, T. 2005. Using
multivariate adaptive regression splines to predict the distributions of New
Zealand’s Freshwater Diadromous fish. Freshwater Biology 50: 2034-2052.
Lee, T.C.M. 2002. On algorithms for ordinary least squares
regression spline fitting: Acomparative study. Journal of Statistical
Computation and Simulation 72(8): 647-663.
Li, M. & Yu, Y. 2006. Arobust approach to the interest
rate: Term structure estimation. Journal of Data Science 4: 169-188.
Molinari, N., Durand, J.F. &
Sabatier, R. 2004. Bounded optimal knots for regression
splines. Computational Statistics & Data Analysis 45: 159-178.
Poyton, A.A., Varziri, M.S., McAuley, K.B., McLellan, P.J.
& Ramsay, J.O. 2006. Parameter estimation in
continuous-time dynamic models using principal differential analysis. Computers
and Chemical Engineering 30: 698-708.
Ramsay, J.O & Silverman, B.W. 1997. Functional
Data Analysis. New York: Springer.
Ramsay, J.O. 1996. Principal differential analysis: Data
reduction by differential operators. Journal of the Royal Statistical
Society Series B58: 495-508.
Ramsay, J.O., Hooker, G., Campbell, D.
& Cao, J. 2007. Parameter estimation
for differential equations: Ageneralized smoothing approach (with discussions). The Journal of the Royal Statistical Society. Series B (Statistical Methodology) 69: 741-796.
Taylan, P., Weber, G-W. & Kropat, E. 2008. Approximation
of stochastic differential equations by additive models using splines and conic
programming. International Journal of Computing Anticipatory Systems 21:
341-352.
Varah, J. M. 1982. Aspline least squares method for
numerical parameter estimation in differential equations. SIAM Journal of
Scientific Statistical Computing 3: 28-46.
Varziri, M.S., McAuley, K.B. & McLellan, P.J. 2008. Parameter and state estimation in nonlinear stochastic
continuous-time dynamic models with unknown disturbance intensity. The
Canadian Journal of Chemical Engineering 86(5): 828-837.
Wallstrom, G., Liebner, J.L. &
Kass, R.E. 2008. An implementation of Bayesian adaptive
regression splines (BARS) in C with S and R wrappers. Journal of Statistical
Software 26(1): 1-2.
*Corresponding
author; email: halizarahman@utm.my