Sains Malaysiana 41(12)(2012): 1651–1656
A Stackelberg Solution to a Two-Level Linear Fractional
Programming Problem
with Interval Coefficients in the Objective Functions
(Penyelesaian Stackelberg bagi Masalah Pengaturcaraan Pecahan Linear Dua-Aras
dengan Pekali Selang dalam Fungsi Objektif)
M. Borza & A. S. Rambely*
School of Mathematical Sciences, Faculty of Science &
Technology
Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
M. Saraj
Department of Mathematics, Faculty of Mathematical Sciences
& Computer
Shahid Chamran University, Ahvaz-Iran
Received: 18 May 2012 / Accepted: 31 July 2012
ABSTRACT
In this paper, two approaches were introduced to obtain Stackelberg solutions for two-level linear fractional
programming problems with interval coefficients in the objective functions. The
approaches were based on the Kth best method and the
method for solving linear fractional programming problems with interval
coefficients in the objective function. In the first approach, linear
fractional programming with interval coefficients in the objective function and
linear programming were utilized to obtain Stackelberg solution, but in the second approach only linear programming is used. Since a
linear fractional programming with interval coefficients can be equivalently
transformed into a linear programming, therefore both of approaches have same
results. Numerical examples demonstrate the feasibility and effectiveness of
the methods.
Keywords: Interval coefficients; linear fractional programming; Stackelberg solution; two-level programming
ABSTRAK
Dalam kajian ini, dua kaedah diperkenalkan untuk mendapatkan penyelesaian Stackelberg bagi masalah pengaturcaraan pecahan linear dua-aras dengan pekali selang dalam fungsi objektif. Kaedah yang digunakan adalah berdasarkan kaedah terbaik peringkat-K dan kaedah penyelesaian masalah pengaturcaraan pecahan linear dengan pekali selang dalam fungsi objektif. Dalam kaedah pertama, pengaturcaraan pecahan linear dengan pekali selang dalam fungsi objektif dan pengaturcaraan linear digunakan untuk mendapatkan penyelesaian Stackelberg, tetapi dalam kaedah kedua hanya pengaturcaraan linear digunakan. Oleh sebab suatu pengaturcaraan pecahan linear dengan pekali selang boleh dijelmakan secara setara kepada pengaturcaraan linear. kedua-dua kaedah menghasilkan keputusan yang sama. Beberapa contoh berangka menunjukkan kesauran dan keberkesanan kaedah-kaedah ini.
Kata kunci: Pekali selang; pengaturcaraan dua-aras; pengaturcaraan pecahan linear; penyelesaian Stackelberg
REFERENCES
Anandalingam, G. & Friesz,
T.L. 1992. Hierarichical optimization. Annals of
Operation Research 34: 1-11.
Annadalingam, G. & White, D.J. 1990. A
solution method for the linear static Stackelberg problem using penalty function. IEEE Transactions on Automatic
Control 35: 1170-1173.
Bard, J.F. 1984. An investigation of the linear
three-level programming problem. IEEE Transactions on Systems, Man
and Cybernetics 14: 711-717.
Bard, J.F. 1998. Practical
Bi-level Optimization: Algorithm and Applications. Dordrecht: Kluwer
Academic Publishers.
Bard, J.F. & Falk, J.E. 1982. An
explicit solution to the multi-level programming problem. Computers
and Operations Research 9: 77-100.
Bard, J.F. & Moore, J.T. 1990. A branch and bound
algorithm for the bi-level programming problem. SIAM Journal on Scientific
and Statistical Computing 11: 281-292.
Bitran, G.R. & Novaes, A.G. 1973. Linear programming with a fractional objective function. Operation
Research 21: 22-29.
Bialas, W.F. & Karwan, M.H. 1984. Two-level linear programming. Management Science 30:
1004-1020.
Borza, M., Rambely,
A.S. & Saraj, M. 2012. Solving linear fractional programming with interval
coefficients in objective function. Applied Mathematical Sciences 69:
3443-3452.
Calvete, H.I. & Gale. C. 1998. On the
quasi-concave bi-level programming problem. Journal of Optimization
Theory and Applications 98: 613- 622.
Charnes, A. & Cooper, W.W. 1962. Programming with linear
fractional functions. Naval Research Logistics Quarterly 9: 181-186.
Hansen, P., Jaumard,
B. & Savard, G. 1992. New branch-and-bound rules for linear bi-level programming. SIAM Journal on Scientific and Statistical Computing 13: 1194-1217.
Luo, Z.Q., Pang, J.S. & Ralph, D. 1996. Mathematical
Programs with Equilibrium Constraints. Cambridge: Cambridge
University Press.
Migdalas, A., Pardalos, P.M. & Varbrand, P. 1998. Multi-level Optimization: Algorithms
and Applications. Dordrecht: Kluwer Academic Publishers.
Sakawa, M. & Nishizaki, I. 2001. Interactive fuzzy programming for two-level linear fractional
programming problems. Fuzzy Sets and Systems 119: 31-40.
Sakawa, M. & Nishizaki,
I. 2009. Cooperative and Noncooperative Multi-Level Programming. New York: Springer.
Sakawa, M., Nishizaki,
I. & Uemura, Y. 2000a. Interactive fuzzy programming for
multi-level linear programming problems with fuzzy parameters. Fuzzy
Sets and Systems 109: 3-19.
Sakawa, M., Nishizaki,
I. & Uemura, Y. 2000b. Interactive
fuzzy programming for two-level linear fractional programming problems with
fuzzy parameters. Fuzzy Sets and Systems 115:
93-103.
Shih, H.S., Lai, Y.J. & Lee, E.S. 1996. Fuzzy approach for multi-level programming problems. Computers
and Operational Research 23: 73-91.
Stancu-Minasian, I.M. 1997. Fractional Programming: Theory, Methods and
Applications. Dordrecht: Kluwer Academic Publishers.
Stackelberg, H.V. 1934. Marketform und Gleicgwicht. Berlin:
Springer-Verlag.
Wen, U.P. & Bialas,
W.F. 1986. The hybrid algorithm
for solving the three-level linear programming problem. Computers and
Operations Research 13: 367-377.
White, D.J. & Annadalingam, G.
1993. A penalty function approach for solving bi-level linear
programs. Journal of Global Optimization 3: 397-419.
*Corresponding
author; e-mail: asr@ukm.my