|   Sains
            Malaysiana 41(2)(2012): 219–224
  
           
             
           Inactivation of Escherichia
            coli Under Fluorescent Lamp using TiO2 
  
           Nanoparticles
            Synthesized Via Sol Gel Method
  
           (Penyahaktifan Escherichia
            coli di bawah Lampu Pendarfluor Menggunakan
  
           Nanozarah TiO2 yang Disintesis
            Melalui Kaedah Sol Gel)
            
           
             
           
             
           Sapizah
            Rahim & Shahidan Radiman*
  
           School
            of Applied Physics, Faculty of Science & Technology
  
           Universiti
            Kebangsaan Malaysia, 43600 UKM  Bangi,
            Selangor D.E. Malaysia
  
           
             
           Ainon
            Hamzah
            
           School
            of Biosciences and Biotechnology, Faculty of Science & Technology
  
           Universiti
            Kebangsaan Malaysia, 43600 UKM  Bangi,
            Selangor D.E. Malaysia
  
           
             
           Received:
            30 March 2011 /Accepted: 1 August 2011
            
           
             
           ABSTRACT
            
           
             
           Titanium dioxide
            nanoparticles were synthesized by using sol gel method and their physico-chemical
            properties were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform
            infrared spectroscopy (FTIR)
            and UV-Vis
            spectrophotometer. The photocatalytic property of TiO2 nanoparticles was investigated by inactivation of Escherichia
              coli under irradiation of fluorescent lamp. The results showed that the size
                of TiO2 was in the range
                of 3 to 7 nm with high crystallinity of anatase phase. The sharp peaks in FTIR spectrum determined
                the purity of TiO2 nanoparticles
                and absorbance peak of UV-Vis
                spectrum showed the energy band gap of 3.2 eV. Optimum inactivation of E.
              coli was obtained at 1.0 g/L TiO2 nanoparticles,
                with 80% of E. coli population was inactivated. The light scattering
                  effect and insufficient concentration are the factors that cause the less
                  effective inactivation reaction for 2.5 g/L and 0.1 g/L TiO2 concentration.
  
 
             
           Keywords: E.
            coli; photocatalyst; sol gel; TiO2 nanoparticles
  
 
             
           ABSTRAK
            
           Nanozarah titanium dioksida
            telah disintesis dengan menggunakan kaedah sol gel dan sifat fizik-kimia telah
            dicirikan dengan menggunakan mikroskop transmisi elektron (TEM),
            pembelauan sinar-X (XRD),
            spektroskopi inframerah transformasi Fourier (FTIR)
            dan UV-Vis
            spektrofotometer. Sifat fotomangkin nanozarah TiO2 telah dikaji terhadap penyahaktifan Escherichia
              coli di bawah sinaran lampu pendarflour. Hasil kajian menunjukan saiz
                nanozarah TiO2 adalah dalam
                julat 3 ke 7 nm dengan habluran fasa anatase yang tinggi. Puncak tajam pada
                spectrum FTIR menunjukan
                ketulenan nanozarah TiO2 dan
                serapan UV-Vis menunjukan
                jurang petala tenaga adalah 3.2 eV. Penyahaktifan E. coli yang optimum
                  diperolehi pada 1.0 g/L kepekatan TiO2 dengan
                  80% populasi E. coli dinyahaktifkan. Kesan serakan cahaya dan kepekatan
                    yang tidak mencukupi adalah faktor kepada kurang efektif tindak balas
                    penyahaktifan pada 0.1 g/L dan 2.5 g/L kepekatan TiO2. 
  
 
             
           Kata kunci: E. coli; fotomangkin; nanozarah TiO2;
            sol gel
            
           
             
           REFERENCES
            
           
             
           Ainon Hamzah, Amir Rabu, Raja Farzarul Hanim Raja Azmy &
            Noor Aini Yussoff. 2010. Isolation and characterization of bacteria degrading
            sumandak and south angsi oils. Sains Malaysiana 39(2): 161-168.
  
           Anwar, N.S.,
            Kassim, A., Lim, H.N., Zakarya, S.A. & Huang, N.M. 2010. Synthesis of TiO2 nanoparticles via
            sucrose ester micelle-mediated hydrothermal processing route. Sains
              Malaysiana 39: 2-4.
  
           Benabbou, A.K.,
            Derriche, Z., Felix, C., Lejeune, P. & Guillard, C. 2007. Photocatalytic
            inactivation of Escherichia coli, effect of concentration of titanium
            dioksida and microorganism, nature and intensity of UV irradiation. Applied
              Catalyst B: Environmental 76: 257-263.
  
           Calandra, P.,
            Goffredi, M. & Liveri, V.T. 1999. Study of the growth of ZnS nanoparticles
            in water/AOT/n-heptane microemulsions by UV-absorption spectroscopy. Colloids
              and Surface A 160: 9-13.
  
           Carp, O.,
            Huisman, C.L. & Reller, A. 2004. Photoinduced reactivity of TiO2. Progress Solid State
              Chemistry 32: 133-177.
  
           Coleman, H.M.,
            Marquis, C.P., Scott, J.A., Chin, S.S. & Amal, R. 2005. Bacterial effects of
            TiO2-based
            photocatalyst. Chemical Engineering Journal 113: 55-63.
  
           Fujishima, A.,
            Rao, T.N. & Tryk, D.A. 2000. Titanium dioxide photocatalysis. Journal of
              Photochemistry and Photobiology C: Photochemistry Reviews 1: 1-12.
  
           Grieken, R.,
            Marugan, J., Sordo, C. & Pablos, C. 2009. Comparison of the photocatalyticc
            disinfection of E. coli suspensions in slurry, wall and fixed-bed reactors. Catalysis
              Today 144(1-2): 48-54.
  
           Han, S., Choi,
            S.-H., Kim, S.-S., Cho, M., Jang, B., Kim, D.-Y., Yoon, J. & Hyeon, T. 2005.
            Low-temperature synthesis of highly crystalline TiO2 nanocrystals and their application to photocatalysis. Small 1:
            812-816.
  
           Jacoby, W.A.,
            Maness, B.C., Wolfrum, E.J., Blake, D.M. & Fennell, J.A. 1998.
            Mineralization of bacterial cell mass on a photocatalytic surface in air. Environmental
              Science and Technology 32: 2650-2653.
  
           Ji, L.Y., Yuan,
            M.M., Xiaohu, W. & Xiaohua, W. 2008. Inactivated properties of activated
            carbon-supported TiO2 nanoparticles
            for bacteria and kinetic study. Journal of Environmental Sciences 20:
            1527-1533.
  
           Jitputti, J.,
            Rattanavoravipa, T., Chuangchote, S., Pavasupree, S., Suzuki, Y. &
            Yoshikawa, S. 2009. Low temperature hydrothermal synthesis of monodispersed
            flower-like titanate nanosheets. Catalysis Communications 10: 378-382.
  
           Kanna, M. &
            Wongnawa, S. 2008. Mixed amorphous and nanocrystalline TiO2 powders prepared by sol-gel method: Characterization and
            photocatalytic study. Materials Chemistry and Physics 110: 166-175.
  
           Kao, L.H., Hsu,
            T.C. & Lu, H.Y. 2007. Sol–gel synthesis and morphological control of
            nanocrystalline TiO2 via
            urea treatment. Journal of Colloid and Interface Science 316: 160-167.
  
           Kikuchi, Y.,
            Sunada, K., Iyoda, T., Hashimoto, K. & Fujishima, A. 1997. Photocatalytic
            bactericidal effect of TiO2 thin
            films: Dynamic view of the active oxygen species responsible for the effect. Journal
              of Photochemistry and Photobiology A: Chemistry 106: 51-56.
  
           Kuhn, K.P., Chaberny, I.F.,
            Massholder, K., Sticker, M., Benz, V.W., Sonntag, H.G. & Erdinger, L. 2003.
            Disinfection of surfaces by photocatalytic oxidation with TiO2 and UVA light. Chemosphere 53: 71-77.
  
           Lee, K.M., Hu, C.W., Chen, H.W.
  & Ho, K.C. 2008. Incorporating carbon nanotube in a low-temperature
            fabrication process for dye-sensitized TiO2 solar cells. Solar Energy
              Materials & Solar Cells 92: 1628-1633.
  
           Li, G., Li., L., Boerio-Goates,
            J. & Woodfield, B.F. 2005. High purity anatase TiO2 nanocrystals: Near
            room-temperature synthesis, grain growth kinetics, and surface hydration
            chemistry. Journal of the American Chemistry Society 24: 8659-8666.
  
           Liu, X.H., Yang, J., Wang, L.,
            Yang, X., Lu, L. & Wang, X. 2000. An improvement on sol-gel method for
            preparing ultrafine and crystallized titania powder. Materials Science and
              Engineering 289: 241-245.
  
           Mahshid, S., Askar, M. &
            Sasani Ghamsari, M. 2007. Synthesis of TiO2 nanoparticels by hydrolysis and
            peptization of titanium isopropoxide solution. Journal of Materials
              Processing Technology 198: 296-300.
  
           Matsunaga, T., Tomoda, R.,
            Nakajima, T. & Wake, H. 1985. Photoelectrochemical sterilization of
            microbial cells by semiconductor powders. FEMS Microbiol Letter 29:
            211-214.
  
           Mizukoshi, Y., Makise, Y., Shuto,
            T., Hu, J., Tominaga, A., Shironita, S. & Tanabe, S. 2007. Immobilization
            of noble metal nanoparticles on the surface of TiO2 by the sonochemical method:
            Photocatalytic production of hydrogen from an aqueous solution of ethanol. Ultrasonics
              Sonochemistry 14: 387-392.
  
           Mohammadia, M.R., Fray, D.J.
  & Cordero-Cabrera, M.C. 2007. Sensor performance of nanostructured TiO2
            thin films derived from particulate sol–gel route and polymeric fugitive
            agents. Sensors and Actuators B 124: 74-83.
  
           Nga, P.C., Denga, C.S., Gub, M.G.
  & Dai, X.M. 2008. Effect of urea on the photoactivity of titania powder
            prepared by sol–gel method. Materials Chemistry and Physics 107: 77-81.
  
           Sartale, S.D. & Lokhande,
            C.D. 2000. Growth of copper sulphide thin films by successive inonic layer
            adsorption and reaction (SILAR) method. Materials Chemistry and Physics 65:
            63-67
  
           Seo, J.-W., Chung, H.-W., Kim,
            M.-Y., Lee, J.& Cheon ,J.-W. 2007. Development of water-soluble single
            crystalline TiO2 nanoparticles for photocatalytic cancer cell treatment. Photocatalysis
              Communication 5: 850-853.
  
           Seven, O., Dindar, B., Aydemir,
            S., Metin, D., Ozinel, M.A. & Icli, S. 2004. Solar photocatalytic
            disinfection of a group of bacteria and fungi aqueous suspensions with TiO2,
            ZnO and Sahara desert dust. Journal of Photochemistry and Photobiology A:
              Chemistry 165: 103-107.
  
           Sunada, K., Kikuchi, Y.,
            Hashimoto, K. & Fujishima, A. 1998. Bactericidal and detoxification effects
            of TiO2 thin film photocatalyst. Environmental Science and Technology 32:
            726-728.
  
           Sunada, K., Watanabe, T. &
            Hashimoto, K. 2003. Studies on photokilling of bacteria on TiO2 thin film. Journal
              of Photochemical and Photobiology A:Chemistry 156: 227-233.
  
           Thevenot, P., Cho, J., Wavhal,
            D., Timmons, R.B. & Tang, L. 2008. Surface chemistry influences cancer
            killing effect of TiO2 nanoparticles. Nanomedicine: Nanotechnology, Biology,
              and Medicine 4: 226-236.
  
           Trung, T. & Ha, C.S. 2004. One-component
            solution system to prepare nanometric anatase TiO2. Materials Science and
              Engineering 24: 19-22.
  
           Velasco, M.J., Rubio, F., Rubia,
            J. & Oteo, J.L. 1999. Hydrolysis of titanium tetrabutoxide study by FTIR
            spectroscopy. Thermochemistry Acta 32: 289-304.
  
           Wang, Y.Q., Zhang, H.M. &
            Wang, R.H. 2008. Investigation of the interaction between colloidal TiO2 and
            bovine hemoglobin using spectral methods. Colloids and Surfaces B:
              Biointerfaces 65: 190-196.
  
           Wolfrum, E.J., Huang, J., Blake,
            D.M., Maness, P.C., Huang, Z., Fiest, J. & Jacoby, W.A. 2002.
            Photocatalytic oxidation of bacteria, bactericidal and fungal spores and model
            biofilm components to carbon dioxide on TiO2 coated surfaces. Environmental
              Science Technology 36: 3412-3419.
  
           Zan, L., Fa, W.J., Peng, T.Y.
  & Gong, Z.K. 2007. Photocatalysis effect of nanometer TiO2 and TiO2-coated
            ceramic plate on Hepatitis Bvirus. Journal of Photochemistry and
              Photobiology B: Biology 86: 165-169.
  
           Zhanga, Y., Zhenga, H., Liub, G.
  & Battagliab, V. 2009. Synthesis and electrochemical studies of a layered
            spheric TiO2 through low temperature solvothermal method. Electrochimica
              Acta 54: 4079-4083.
  
           
             
           *Corresponding
            author; email: shahidan@ukm.my
            
           
            
               |