Sains Malaysiana 41(3)(2012): 285–291

 

Physico-chemical Characteristics of Disturbed Soils Affected by Accumulate of

Different Texture in South Korea

(Pencirian Fisiko-Kimia Tanih Terganggu Akibat Pengumpulan Tekstur  

Berbeza di Korea Selatan)

 

 

Muhammad Ibrahim*

Department of Environmental Sciences, GC University Faisalabad (38000), Pakistan

 

Kyung-Hwa Han, Sang-Keun Ha, Yong-Seon Zhang & Seung-Oh Hur

Department of Agricultural Environment, Soil & Fertilizer Management Division

National Academy of Agricultural Science (NAAS),

 Rural Development Administration (RDA)

Suwon (441-707), Republic of Korea

 

Received: 30 May 2011 / Accepted: 17 August 2011

 

 

ABSTRACT

 

Anthropogenically disturbed soils have unique properties. In most of the ecosystems, especially under disturbed soil conditions, the soil properties are controlled by the accumulated materials. However, the equilibrium between the already present soil mass and the accumulated soil mass is very fragile and is affected by many factors. There are diversity of views about their identification and interpretations. This paper reports onthe physico-chemical properties of the investigated sites under different texture soil accumulate. Three sites namely Chung-nam university field (Site-I), Chung-buk Geosan (Site-II) and Yong-in (Site-III) were investigated for diversity in physico-chemical properties. In situ and ex situ physical and chemical properties were determined and comparisons were made for soil profiles examined at three sites. The classification of disturbed soils largely depends upon the system followed for classification. The objectives of this paper were to compare the properties of the disturbed soils and to classify for further research investigations of such soils. Abrupt change in electrical conductivity at Site-III was recorded ranged between 10.7 dS m–1 and 1.1 dS m–1 below 20 cm depth. Sudden and abrupt changes in infiltration rates at all sites were also calculated. The data suggested that the soil texture of the accumulated soil had also affected the properties of the underlying soil. Apparently, the difference in the properties seems to be the result of overlying soil accumulates with different texture. The disturbed soils need to be studied in detail and groupings be made on the basis of genesis and similarities.

 

Keywords: Soil accumulates; soil properties; soil texture

 

 

ABSTRAK

 

Tanih terganggu akibat kegiatan manusia mempunyai sifat-sifat tersendiri. Untuk kebanyakan ekosistem, khususnya keadaan tanih terganggu, sifat tanih dikawal oleh bahan terkumpul. Tetapi keseimbangan di antara jasad tanih sedia ada dan jasad tanih terkumpul adalah rapuh dan dipengaruhi beberapa faktor. Terdapat juga pandangan berbeza tentang penentuan dan penafsirannya. Makalah ini melaporkan pencirian fiziko-kimia tapak-tapak penyiasatan dengan tekstur tanih berbeza terkumpul. Tiga tapak tersebut ialah padang di Universiti Chung-nam (tapak I), Geosan Chung-buk (tapak II) dan Yong-in (tapak III) dan kepelbagaian sifat fiziko-kimia disiasat. Sifat fizis dan kimia in situ dan ex situ ditentukan dan perbandingan di antara tiga tapak siasatan dilakukan. Pengelasan tanih terganggu bergantung juga kepada system pengelasan yang dipakai. Objektif kertas ini ialah perbandingan sifat-sifat tanih terganggu serta pengelasannya untuk penyelidikan seterusnya terhadap tanih-tanih ini. Perubahan mendadak kekonduksian elektrik di tapak III dirakamkan di antara 10.7 dS m–1 dan 1.1 dS m–1 pada kedalaman 20 cm. Perubahan mendadak kadar penyusupan di semua tapak juga ditentukan. Data menunjukkan bahawa tekstur tanih terkumpul juga mempengaruh tanih yang wujud di bawahnya. Perbezaan sifat adalah hasil pengumpulan tanih atas dengan tekstur yang berbeza. Tanih terganggu perlu dikaji secara terperinci dan pengumpulannya perlu dilakukan berdasarkan genesis dan keserupaan.

 

Kata kunci: Sifat tanih; tanih terkumpul; tekstur tanih

 

 

REFERENCES

 

 

Abd-Rahim, S., Idris, W.M.R., Rahman, Z.A., Lihan, T., Gasim, M.B., Said, M.N.M. & Xing, K.L. 2011. Physico-chemical Status of Soil at the Site of UKM Research Centre, Tasik

Chini, Pahang, Malaysia. Sains Malaysiana 40: 101-110. Abrisqueta, J.M., Plana, V., Ruiz-Canales, A. & Ruiz-Sánchez,

M.C. 2006. Unsaturated hydraulic conductivity of disturbed and undisturbed loam soil. Spanish J. Agric. Res. 4: 91-96.

Alban, L.A., Vacharotayan, S., & Jackson, T.L. 1964. Phosphorus availability in reddish brown Lateritic soils. I. Laboratory studies. Agronomy Journal 56: 555-558.

Allen, B.L. & D.S. Fanning. 1988. Composition and soil genesis. In: Pedogenesis and Soil Taxonomy: Concepts and Interactions, Wilding, L.P., N.E. Smeck and G.F. Hall (Editors). Elsevier, pp 141-192.

Banov, M., Tsolova, V., Ivanoa, P. & Hristova, M. 2010. Anthropogenically disturbed soils and methods for their reclamation. Agricultural Science and Technology 2: 33-39.

Bradshaw, A.D. 1997. What do we mean by restoration? In: Urbanska, K.M., Webb, N.R. & Edwards, P.J. (eds.) Restoration Ecology and Sustainable Development. Cambridge: Cambridge University Press, pp. 8-14.

Chambers, J. 1997. Restoring alpine ecosystems in the United States. In: Urbanska, K.M., Webb, N.R. & Edwards, P.J. (ed.). Restoration Ecology and Sustainable Development. Cambridge: Cambridge University Press.

Craul, P.J. 1992. Urban Soil in Landscape Design. New York: John Wiley & Sons.

Craul, P.J., & Klein, C.J. 1980. Characterization of street side soils of Syracuse, New York. In: METRIA 3: Proc. Conf. Metropolitan Tree Improve. Alliance, 3rd, Rutgers, NJ.

June 18-20, 1980, North Carolina State Univ. Raleigh, pp. 88-101.

DeJong, R., Campbell, C.A. & Nicholaichuk, W. 1983. Water retention equations and their relationship to soil organic matter and particle size distribution for disturbed samples. Canadian Journal of Soil Science 63: 291-302.

Hartman, B.A., Ammons, J.T. & Hartgrove, N.T. 2004. A proposal for the classification of anthropogenic soils. In: 2004 National Meeting of the American Society of Mining and Reclamation and 25th West Virginia Surface Mine Drainage Task Force, April 18-24, 2004. Published by ASMR, 3134 Montavesta Rd., Lexington, KY 40502.

Hart, P.B.S., August, J.A. & West, A.W. 1989. Long term consequences of topsoil mining o biological and physical characteristics of two New Zealand loessial soils under grazed pasture. Land Degradation and Rehabilitation 1: 77-88.

Ibrahim, M., Yamin, M., Sarwar, G., Anayat, A., Habib, F., Ullah, S. & Rehman, S. 2011. Tillage and farm manure affect root growth and nutrient uptake of wheat and rice under semi-arid conditions of Pakistan. Applied Geochemistry 26: S194-S197.

Iqbal, M., Hassan, A. & Ibrahim, M. 2008. Effects of tillage systems and mulch on soil physical quality parameters and maize (Zea mays L.) yield in semi-arid Pakistan. Biological Agriculture and Horticulture 25: 311-325.

Jim, C.Y. 1993. Soil compaction as a constraint to tree growth in tropical and subtropical urban habitats. Environmental Conservation 20: 35-49.

Jim, C.Y. 1998. Physical and chemical properties of a Hong Kong roadside soil in relation to urban tree growth. Urban Ecosystem 2: 171-181.

Kevan, P.G., Forbes, B.C., Kevan, S.M. & Behan-Pelletier, V. 1995. Vehicle tracks on high arctic tundra: their effects on soil, vegetation and soil arthropods. Journal of Applied Ecology 32: 655-667.

Klute, A., Campbell, G.S., Jackson, R.D., Mortland, M.M. & Nielsen, D.R. 1986. Methods of Soil Analysis. Part I. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI.

Kooistra, M.J., Bouma, J., Boersma, O.H. & Jager, A. 1984. Physical and morphological characterization of undisturbed and disturbed plough pans in a sandy loam soil. Soil Tillage Research 4: 405-417.

Kuo, S. 1996. Phosphorus. In Methods of Soil Analysis, Part 3.Chemical Methods, edited by Sparks D.L. 3nd Ed. ASA and SSSA, Madison, WI. pp. 869-920.

Marion, J.L. & Cole, D.N. 1996. Spatial and temporal variation in soil and vegetation impacts on campsites. Ecological Applications 6: 520-530.

Monti, P. & Mackintosh, E.E. 1979. Effect of camping on surface soil properties in the boreal forest region of North-Western Ontario, Canada. Soil Science Society of America Journal 49: 751-753.

NIAST 2000. Method of Soil and Plant Analysis. National Institute of Agricultural Science and Technology, Suwon, Korea.

Pastor, J. & Garcia-Cabeza, C. 1990. Estudio del contenido enaniones solubles de la superficie tipo rana de la provincia deGuadalajara por medio de cromatografia ionica. Memoria del Instituto de Edafologia y Biologia Vegetal. 55 pp. (inedito).

Pastor, J., Hernandez, A.J., Adarve, M.J. & Urcelay, A. 1993. Chemical characteristics of sedimentary soils in the Mediterranean environment: a comparison of undisturbed and disturbed soils. Applied Geochemistry 2: 195-198.

Patterson, J.C., Murray, J.J. & Short, J.R. 1980. The impact of urban soils on vegetation. p. 33-56. In METRIA 3: Proc. Conf. Metropolitan Tree Improve. Alliance, 3rd, Rutgers, NJ. June 18-20, 1980. North Carolina State Univ. Raleigh.

Pitt, R. 1987. Small storm urban flow and particulate wash off contributions to outfall discharges. Ph.D. Dissertation. Civil and Environmental Engineering Department, University of Wisconsin, Madison, WI, November 1987.

Pouyat, R.V., Russell-Anelli, J., Yesilonis, I.D. & Groffman, P.M. 2003. Soil carbon in urban forest ecosystems. In The Potential of U.S. Forest Soils to Sequester Carbon and Mitigate the Greenhouse Effect (Kimble, J.M., Heath, L.S., Birdsey, R.A.& Lal, R. (ed.), Boca Raton, FL: CRC Press pp. 347-362.

Sarwar, M.A., Ibrahim, M., Tahir, M., Ahmad, K., Khan, Z.I. & Valeem, E.E. 2010. Appraisal of pressmud and inorganic fertilizers on soil properties, yield and sugarcane quality. Pakistan Journal of Botany 42: 1361-67.

Scalenghe, R., Bonifacio, E., Celi, L., Ugolini, F.C. & Zanini, E. 2002. Pedogenesis in disturbed alpine soils (NW Italy). Geoderma 109: 207-224.

Short, J.R., Fanning, D.S., Foss, J.E. & Patterson, J.C. 1986. Soils of the Mall in Washington, DC: I. Statistical summary of properties. Soil Science Society of America Journal 50: 699-705.

Smeck, N.E. 1985. Phosphorus dynamics in soils and landscapes, Geoderma 36: 185-199.

Sumner, M.E. & Miller W.P. 1996. Cation exchange capacity and exchange coefficients. In Methods of Soil Analysis, edited by Sparks, D.L. part 3. Chemical Methods, 3nd Ed. ASA and SSSA, Madison, WI. pp. 1201-1230.

Taboada-Castro, R.M., Alves, M.C., Nascimento, V. & Taboada- Castro, M.T. 2009. Revegetation on a Removed Topsoil: Effect on Aggregate Stability. Communications in Soil Science and Plant Analysis 40: 771–786.

Tyurin, L.V. 1931. A new modification of the volumetric method of determining soil organic matter by means of chromic acid. Pochvovedenie 26: 36-47.

Whisenant, S.G. 1999. Selecting plant materials. In: Repairing Damaged Wildlands. Cambridge: Cambridge University Press, pp. 128-167.

Zabinski, C. A. & Cole, D.C. 2000. Understanding the factors that limit restoration success on a recreation-impacted subalpine site. In: Cole, D.N., McCool, S.F., Borrie, W.T. & O’Loughlin, J. (eds.). Wilderness Science in a Time of Change. USDA Forest Service, Ogden, UT, pp. 216-221.

Zabinski, C.A., Deluca, T.H., Cole, D.N. & Moynahan, O.S. 2002. Restoration of highly impacted subalpine campsites in the eagle cap wilderness, Oregon. Restoration Ecology 10: 275-281.

 

 

*Corresponding author; email: ebrahem.m@gmail.com/ bearthink@korea.kr

   

 

 

previous