Sains Malaysiana 41(3)(2012): 371–377
Markov Switching Models for Time Series
Data with Dramatic Jumps
(Model Peralihan Markov untuk Data Siri Masa dengan Lompatan Drastik)
Masoud Yarmohammadi*, Hamidreza Mostafaei
& Maryam Safaei
Department of Statistics, Tehran North
Branch, Islamic Azal University, Tehran Iran
Received: 10 June 2011 / Accepted: 19
September 2011
ABSTRACT
In this research, the Markov switching
autoregressive (MS-AR) model and six different time series modeling approaches
are considered. These models are compared according to their performance for
capturing the Iranian exchange rate series. The series has dramatic jump in
early 2002 which coincides with the change in policy of the exchange rate
regime. Our criteria are based on the AIC and BIC values. The results indicate
that the MS-AR model can be considered as useful model, with the best fit, to
evaluate the behaviors of Iran’s exchange rate.
Keywords: Fluctuations of exchange rate; Markov
Switching Autoregressive model; nonlinear times series models
ABSTRAK
Dalam penyelidikan ini model autoregresi Markov (MS-AR) dan enam pendekatan model siri masa dipertimbangkan. Model-model ini dibandingkan mengikut keupayaan mendapatkan siri kadar pertukaran wang Iran. Siri ini mempunyai lompatan drastik pada awal 2002 yang berlaku serentak dengan perubahan polisi kadar regim pertukaran wang. Kriteria yang telah kami gunakan adalah berasaskan kepada nilai AIC dan BIC. Keputusan menujukkan bahawa model MS-AR boleh dikatakan berguna.
Kata kunci: Model autoregrasi peralihan Markov; model siri masa tak linear; naik-turun kadar pertukaran
REFERENCES
Akaike, H. 1974. A new
look at statistical model identification, IEEE Transactions on Automatic
Control 19: 716-723.
Akaike, H. 1979. A Bayesian extension of the minimum AIC procedure. Biometrika 66: 237-242.
Bollen, NP. B., Gray,
S.F. & Whaley, R.E. 2000. Regime switching inforeign exchange rates: Evidence from currency option prices. Journal of
Econometrics 94: 239-276.
Cologni,
A. & Manera, M. 2009. The asymmetric
effects of oil shocks on output growth: A Markov–Switching analysis for the G-7
countries. Economic Modelling26: 1-29.
Engle, R.F. 1982. Autoregressive
Conditional Heteroscedasticity with Estimates of the
Variance of U.K. In_ation, Econometrica,
50: 987-1007.
Engel, C. & Hamilton, J.D. 1990.
Long switching in the dollar: are they the data and do Markets know it? American
Economic Review 80: 689-713.
Franses, P.H. & Dijk, D.V. 2000. Non-linear time series models in empirical_nance, Cambridge: Cambridge University
Press.
Hamilton, J.D. 1989. A
new approach to the economic analysis of nonstationary time series and the business cycle, Econometrica 57: 357-384.
Hamilton, J.D. & Susmel,
R. 1994. Autoregressive conditional heteroskedasticity and changes in regime. Journal of Econometrics 64: 307-333.
Hansen, B. 1999. Testing for
linearity. Journal of Economic Surveys 13(5): 551-576.
Hassani, H. & Thomakos, D. 2010. A Review on Singular Spectrum Analysis
for Economic and Financial Time Series, Statistics and its Interface 3(3):
377-397.
Hassani, H., Heravi, H. & Zhigljavsky, A.
2009. Forecasting European Industrial Production with Singular Spectrum Analysis, International Journal of Forecasting 25(1): 103-118.
Hassani, H. 2007.
Singular Spectrum Analysis: Methodology and Comparison. Journal of Data
Science 5(2): 239-257.
Hassani,
H., Dionisio, A. & Ghodsi,
M. 2010. The effect of noise reduction in measuring the linear and nonlinear dependency of
financial markets, Nonlinear Analysis: Real World Applications 11(1):
492-502.
Ismail, M.T. & Isa, Z. 2006. Modelling Exchange Rates Using Regime Switching Models. Sains Malaysiana35(2):
55-62.
Kang, I.B. 1999. International foreign
exchange agreements and nominal exchange rate volatility: a GARCH application.The North American Journal of
Economics and Finance, 10(2): 453-472.
Kroner, K.F.
& Lastrapes, W.D. 1993. The impact of
exchange rate volatility on international trade:Reduced form estimates using the GARCH-in-mean
model. Journal of International Money and Finance 12(3): 298-318.
Lee, Y.H. & Chen, L.S. 2006. Why use
Markov-switching models in exchange rate prediction? Economic Modelling, 23: 662-668.
Mills, C.T. & Markellos,
N. R. 2008. The Econometric Modelling of Financial Time Series. Cambridge University
Press. Priestley, M.B. 1988. Non-linear and
Non-stationary Time Series Analysis. NY: Academic Press INC.
Psaradakis, Z. & Spagnolo, N. 2003. On the determination of the number of
regimes in Markov–Switching autoregressive models, Journal of Time Series
Analysis 24: 237-252.
Teräsvirta, T. 1994. Specification, estimation, and evaluation of smooth transition
autoregressive models, Journal of the American Statistical
Association 89: 208-18.
Tong, H. 1990. Non-Linear
Time Series: A Dynamical Systems Approach. Oxford: Oxford University Press. Wang, J.X. & Wong, H.I. 1997. The predictability of Asian exchange
rates: evidence from Kalman filter and ARCH estimations. Journal of Multinational Financial Management, 7(3): 231-252.
Wood, S.N. 2004. Stable and efficient
multiple smoothing parameter estimation for generalized additive models. J. Amer. Statist. 99:673-686.
Wood, S.N. 2006. Generalized Additive
Models: An Introduction with R, NY: CRC Press.
Wood, S.N. 2011. Fast stable restricted
maximum likelihood and marginal likelihood estimation of semi parametric
generalized linear models. Journal of the Royal Statistical Society (B) 73(1):
3-36.
*Corresponding
author; email: h_mostafaei@iau-tnb.ac.ir
|