Sains Malaysiana 41(4)(2012): 419-422

 

Challenges in Culturing Macaca fascicularis Bone Marrow Stem Cells

(Cabaran di dalam Pengkulturan Sel Stem Sum-Sum Tulang Macaca fascicularis)

 

 

S. Sharen @ Sharen Aini, M.H. Ng, S.B. Shamsul & B.H.I. Ruszymah

Tissue Engineering Centre, Faculty of Medicine

Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latiff

Bandar Tun Razak Cheras, 56000 Kuala Lumpur, Malaysia

 

R. Masfueh & B. Badiah

Department of Periodontology, Faculty of Dentistry, Universiti Kebangsaan Malaysia

Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia

 

K.H. Chua

Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia

Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia

 

C.K. Low

Laboratory Animal Resource Unit, Faculty of Medicine

Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz

50300 Kuala Lumpur, Malaysia

 

A.J. Mohd. Nazimi, N. Rafiqah & R. Ramli

Department of Oral and Maxillofacial Surgery, Faculty of Dentistry

Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latiff, Cheras

56000 Kuala Lumpur, Malaysia

 

Y. Norziha & A.S. Shariffal Shuriana

Department of Prosthodontics, Faculty of Dentistry, Universiti Kebangsaan Malaysia

Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia

 

C.H. Siar

Department of Oral Pathology, Oral Medicine and Periodontology

Faculty of Dentistry, University of Malaya

50603 Kuala Lumpur, Malaysia

 

Received: 17 February 2011 / Accepted: 2 November 2011

 

 

ABSTRACT

 

Culturing Macaca fascicularis bone marrow stem cells in fetal bovine serum (FBS) resulted in low proliferation and long period of incubation. Therefore, its potential uses are exhausted. Here we report the establishment of culturing the Macaca fascicularis bone marrow stem cells using the FBS in combination with autologous serum. Five percent autologous serum was added to the Minimum Essential Medium (MEM) alpha medium and 10% FBS while 0.2 mM acid ascorbic 2-phosphate, 10 mM β-glycerolphosphate, 10-8 molar dexamethasone were used for osteogenic induction. Following this combination, our results showed higher growth kinetic i.e. 1.41% growth rate higher compared to only 0.46% growth rates of the cells using FBS alone and shorter population doubling time (4 to 7 days) compared to the culture without the combination of FBS and autologous serum (30 days). Thus, the combination of the FBS and autologous serum permits fast cell growth and tissue construction.

 

Keywords: Bone marrow stem cells; Macaca fascicularis; tissue engineering

 

ABSTRAK

 

Pengkulturan sel stem sum-sum tulang Macaca fascicularis di dalam (FBS) fetal bovine serum (FBS) menghasilkan proliferasi sel yang rendah serta tempoh inkubasi yang panjang. Kami melaporkan penambahbaikan teknik pengkulturan sel stem sum-sum tulang Macaca fascicularis ini dengan menggunakan FBS bersama-sama dengan serum Macaca fascicularis. Serum (5%) ditambah kepada Minimum Essential Medium (MEM) alpha medium dan 10% FBS manakala 0.2 mM asid askorbik 2-fosfat, 10 mM β-glyserolfosfat dan 10-8 molar deksamethason digunakan untuk pengaruhan tulang. Kajian ini menunjukkan pertumbuhan kinetik sel yang tinggi iaitu 1.41% lebih tinggi jika dibandingkan dengan 0.46% pengkulturan sel tanpa kehadiran serum Macaca fascicularis manakala masa untuk populasi sel berganda pula mengambil masa di antara 4 hingga 7 hari di dalam kultur yang menggunakan serum berbanding dengan 30 hari kultur tanpa serum. Ini menunjukkan kombinasi serum ini dapat mempercepatkan pertumbuhan sel dan pembentukan

konstruk tisu tulang.

 

Kata kunci: Kejuruteraan tisu; Macaca fascicularis; sel stem sum-sum tulang

 

 

REFERENCES

 

Angela Ng, M.H., Tan, K.K., Shamsul, B.S., Aminuddin, B.S. & Ruszymah, B.H.I. 2005. Tissue engineered bone using bioresorbable porous ceramic scaffold – a natural substitute for bone graft. In: 16th International Invention, Innovation, Industrial Design and Technology Exhibition (ITEX). pp. 19-21 May, Kuala Lumpur.

Csaki, C., Matis, U., Mobasheri, A. & Shakibaei, M. 2009. Co-culture of canine mesenchymal stem cells with primary bone-derived osteoblasts promotes osteogenic differentiation. Histochemistry and Cell Biology 131(2): 251-266.

Gstraunthaler, G., Schoffl, H., Appl, H. & Pfaller, W. 2008. Alternative to use of fetal bovine serum (FBS): A survey of recent strategies to reduce or replace FBS in cell and tissue culture. In 15th Congress on Alternatives to Animal Testing,

Linz, Austria. ALTEX 25 (Suppl. 1): 24, 2008. Kokemueller, H., Spalthoff, S., Nolff, M., Tavassol, F., Essig, H., Stuehmer, C., Bormann, K.H., Rücker, M. & Gellrich, N.C. 2010. Prefabrication of vascularized bioartificial bone grafts in vivo for segmental mandibular reconstruction: experimental pilot study in sheep and first clinical application. International Journal of Oral and Maxillofacial Surgery 39(4): 379-387.

Pancrazio, J.J., Wang, F. & Kelley, C.A. 2007. Enabling tools for tissue engineering. Biosensors and Bioelectronics 22(12): 2803-2811.

Ren, Z., Wang, J., Zou, C., Guan, Y. & Zhang, Y.A. 2010. Comparative characterization of mesenchymal stem cells from different age groups of cynomolgus monkeys. Science China. Life Sciences 53(5): 563-572.

Schecroun, N. & Delloye, C. 2004. In vitro growth and osteoblastic differentiation of human bone marrow stromal cells supported by autologous plasma. Bone 35(2): 517-524.

Seto, I., Marukawa, E. & Asahina, I. 2006. Mandibular reconstruction using a combination graft of rhBMP-2 with bone marrow cells expanded in vitro. Plastic and Reconstructive Surgery 117(3): 902-908.

Shahdadfar, A., Fronsdal, K., Haug, T., Reinholt, F.P. & Brinchmann, J.E. 2005. In vitro expansion of human mesenchymal stem cells: choice of serum is a determinant of cell proliferation, differentiation, gene expression, and transcriptome stability. Stem Cells 23(9): 1357-1366.

Thomas, S., Ecklebe, S. & Hauner, H. 2007. A novel technique to propagate primary human preadipocytes without loss of differentiation capacity. Obesity 15(12): 2925-2931.

Viateau, V., Guillemin, G., Bousson, V., Oudina, K., Hannouche, D., Sedel, L., Logeart-Avramoglou, D. & Petite, H. 2007. Long-bone critical-size defects treated with tissue engineered grafts: a study on sheep. Journal of Orthopedic Research 25(6): 741-749.

Wang, C., Wang, Z., Li, A., Bai, F., Lu, J., Xu, S. & Li, D. 2010. Repair of segmental bone-defect of goat’s tibia using a dynamic perfusion culture tissue engineering bone. Journal of Biomedical Materials Research Part A 92(3): 1145-1153.

Wang, T., Dang, G., Guo, Z., & Yang, M. 2005. Evaluation of autologous bone marrow mesenchymal stem cell-calcium phosphate ceramic composite for lumbar fusion in rhesus monkey interbody fusion model. Tissue Engineering11(7-8): 1159-1167.

 

 

*Corresponding author; email: roza@medic.ukm.org

 

 

 

previous