Sains
Malaysiana 41(4)(2012): 439-444
Penentuan Aras Jalur Tenaga Kompleks
Tungsten Nitrosilditiolena
(Determination of
Band Energy Levels for Tungsten Nitrosyldithiolene)
Mark Lee Wun Fui1, Ng Kim Hang1, Lorna Jeffery Minggu2,
Akrajas Ali Umar3 & Mohammad B. Kassim 1, 2 *
1Pusat
Pengajian Sains Kimia dan Teknologi Makanan, Fakulti Sains dan Teknologi
Universiti
Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor D.E., Malaysia
2Institut
Sel Fuel, Universiti Kebangsaan Malaysia
43600
UKM, Bangi, Selangor D.E., Malaysia
3Institut
Kejuruteraan Mikro dan Nanoelektronik (IMEN), Universiti Kebangsaan Malaysia
43600
UKM Bangi, Selangor D.E., Malaysia
Received:
29 June 2011 / Accepted: 20 October 2011
ABSTRACT
The
chemical and physical properties of tungsten nitrosyldithiolene complexes with
a general formulae of [WTp*(NO)(L)] where Tp* = tris(3,5-dimethylpyrazolyl)hidroborate
and L = toluene 3,4-dithiolate (L1), 1,2-benzenedithiolate (L2),
3,6-dichloro-1,2-benzenedithiolate (L3), have been studied for application as a
photosensitizer in an anode for photoelectrochemical cell. These complexes were
synthesized and characterised by infrared (IR), ultraviolet-visible (UV-Vis)
spectroscopy and CHNS micro elemental analysis. Cyclic voltammetry (CV) was
used to determine their redox potentials and their band energies were
calculated from the potentials obtained. All three complexes showed energy band
gaps in the range of 1.59 – 1.63 eV. The calculated band gaps from CV analyses
were comparable with the estimated values obtained from the UV-Vis absorption
data. Based on the postulated band diagram, these complexes may be a potential
photosensitizer to be used in the photoeletrodes for photoelectrochemical
cells.
Keywords: Photoelectrochemical
cell; photosensitizer; tungsten nitrosyldithiolene
ABSTRAK
Sifat-sifat
kimia dan fizik kompleks tungsten nitrosilditiolena dengan formula am
[WTp*(NO)(L)] dengan Tp* = tris(3,5- dimetilpirazolil)hidroborat dan L =
toluena-3,4-ditiolat (L1), 1,2-benzenaditiolat (L2),
3,6-dikloro-1,2-benzenaditiolat (L3), telah dikaji untuk dijadikan pemeka foto
bagi elektrod anod untuk sel fotoelektrokimia. Kompleks tungsten
nitrosilditiolena disintesiskan dan diciri dengan menggunakan spektroskopi (IR)
dan ultra-lembahyung dan cahaya nampak (UV-Vis) dan analisis mikro unsur CHNS.
Teknik voltametri berkitar (CV) telah digunakan untuk menentukan keupayaan
redoks kompleks dan seterusnya aras jalur tenaga telah ditentukan daripada data
yang diperoleh. Ketiga-tiga kompleks menunjukkan jurang jalur tenaga dalam
julat 1.59 – 1.63 eV. Jurang jalur tenaga yang dikira daripada analisis CV
adalah bersepadan dengan anggaran daripada spektrum serapan elektronik
kompleks. Berdasarkan gambar rajah jalur tenaga, ketiga-tiga kompleks dijangka
mempunyai potensi untuk digunakan sebagai pemeka foto bagi fotoelektrod sel fotoelektrokimia.
Kata
kunci: Pemeka foto; sel fotoelektrokimia; tungsten nitrosilditiolena
REFERENCES
Alobaidi,
N., Chaudhury, M., Clague, D., Jones, C.J., Pearson, J.C., McCleverty, J.A.
& Salam, S.S. 1987. Monometallic, homo- and hetero-bimetallic complexes based
on redox active tris(3,5-dimethylpyrazolyl) borato-molybdenum and -tungsten
nitrosyls. Part 4. The effects of ligating atom type on the reduction potentials
of monometallic complexes. Journal of the Chemical Society, Dalton
Transactions (7): 1733-1736.
Alobaidi,
N., Jones, C.J. & McCleverty, J.A. 1989. Chelate complexes containing the
{Mo(NO)
HB(3,5-Me2C3N2H)3}
moiety and an example of a pyrazole substitution reaction involving the
HB(3,5-Me2C3N2H)3 ligand. Polyhedron 8 : 1033-1037.
Ashkan,
S., Muhamad, M.S. & Muhammad, Y. 2011. Determination of HOMO and LUMO of
[6,6]-Phenyl C61-butyric acid 3-ethylthiophene ester and poly (3-octyl-thiophene-2,
5-diyl) through voltametry characterization. Sains Malaysiana 40:
173-176.
Burgmayer,
S.J.N., Kim, M., Petit, R., Rothkopf, A., Kim, A., BelHamdounia, S., Hou, Y.,
Somogyi, A., Habel-Rodriguez, D., Williams, A. & Kirk, M.L. 2007.
Synthesis, characterization, and spectroscopy of model molybdopterin complexes. Journal of Inorganic Biochemistry 101: 1601–1616
Grätzel,
M.A. 2001.Sol-gel processed TiO2 films for photovoltaic
applications. Journal of Sol-Gel Science and Technology. 22:
7–13.
Horikoshi,
S., Satou, Y., Hidaka, H. & Serpone, N. 2001. Enhanced photocurrent
generation and photooxidation of benzenesulfonate in a continuous flow reactor
using hybrid TiO2 thin films immobilized on OTE electrodes. Journal of
Photochemistry and Photobiology A: Chemistry 146: 109–119.
Islam,
A., Sugihara, H., Arakawa, H. 2003. Molecular design of ruthenium(II)
polypyridyl photosensitizers for efficient nanocrystalline TiO2 solar cells. Journal of Photochemistry and Photobiology A: Chemistry 158: 131–138.
Jian,
G.C., Chia, Y.C., Shi, J.W., Jheng, Y.L., Chun, G.W. & Kuo, C.H. 2008. On
the photophysical and electrochemical studies of dye-sensitized solar cells with
the new dye CYC-B1. Solar Energy Materials & Solar Cells 92:
1723–1727.
Joshi,
H.K., Inscore, F.E., Schirlin, J.T., Dhawan, I.K., Carducci, M.D., Bill, T.G.
& Enemark, J.H. 2002. Six-coordinate molybdenum nitrosyls with a single ene-1,2
–dithiolate ligand. Inorganica Chimica Acta 337: 275-286.
Kar,
S., Rajeshwar, K., Singh, P., DuBow, J. 1979. On the design and operation of
electrochemical solar cells. Solar Energy 23(2): 129-139.
Kelly,
N.A. & Gibson, T.L. 2006. Design and characterization of a robust
photoelectrochemical devive to generate hydrogen using solar water splitting. International Journal of Hydrogen Energy 31: 1658–1673.
Lorna,
J.M., Wan, R.W.D. & Kassim, M.B. 2010. An overview of photocells and
photoreactors for photoelectrochemical water splitting. International
Journal of Hydrogen Energy 35: 5233-5244.
McCleverty,
J.A., Seddon, D., Bailey, N.A. & Walker, N.W. 1976. The chemistry of
cyclopentadienyl and related nitrosyl complexes of molybdenum. Part V. D ihalogenonitrosyl[tris(pyrazolyl)borato]molybdenum
complexes, their alcoholysis, and the crystal structure of chloronitrosylisopropoxo[tris(4-chloro-3,5-dimethylpyrazolyl)
borato]molybdenum. Journal of the Chemical Society, Dalton
Transactions (10) : 898-908.
O’Regan,
B. & Grätzel, M.A. 1991. Low-cost, highefficiency solar cell based on
dye-sensitized colloidal TiO2 films. Nature 353: 737-739.
Pommerehene,
J., Vestweber, H., Guss, W., Mahrt, R.F., Bassler, H., Prorsch, M. & Daub,
J. 1995. Efficient two layer LEDs on a polymer blend basis. Advance Materials 7: 551-554.
Tan,
M.X., Laibinis, P.E., Nguyen, S.T., Kesselman, J.M., Stanton, C.E., Lewis, N.S.
1994. Principles and application of semiconductor photoelectrochemistry. Progress
in Inorganic Chemistry 41: 21-144.
Thomas,
J.K.R., Velusamy, M., Lin J.T., Chien, C.H., Tao, Y.T., We., Y.S., Hu, Y.H.
& Chou, P.T. 2005. Efficient red-emitting cyclometalated iridium(III)
complexes containing lepidine-based ligands. Inorganic Chemistry 44:
5677-5685.
Trofimenko,
S. 1993. Recent advances in poly(pyrazolyl) borate (Scorpionate) Chemistry. Chemical
Reviews 93: 943-980.
Wlodarczyk,
A., Maher, J.P., Coles, S., Hibbs, D.E., Hursthouse, M.H.B. & Abdul Malik,
K.M. 1997.
Oxo-bridged
binuclear molybdenum nitrosyl halides: structural and redox studies,
mixed-valence behavior, and characterisation of mononuclear hydroxo precursors.
Journal of the Chemical Society, Dalton Transactions (15):
2597-2606.
Zhao,
Q., Liu S., Shi, M., Wang, C., Yu, M., Li, Lei., Li, F., Yi, Tao. & Huang,
C. 2006. Series of new cationic iridium(III) complexes with tunable emission wavelength
and excited state properties: structures, theoretical calculations, and
photophysical and electrochemical properties. Inorganic Chemistry 45: 6152-6160.
*Corresponding author; email: mbkassim@ukm.my
|