Sains
Malaysiana 41(4)(2012): 445-452
Effects of Spin Contamination on the
Stability and Spin Density of Wavefunction of Graphene: Comparison between First Principle
and Density Functional Methods
(Kesan Pelumusan Spin Terhadap Kestabilan dan
Ketumpatan Spin bagi Fungsi Gelombang
Grafen pelumusan: Perbandingan antara Kaedah Prinsip Pertama dan Kaedah Kefungsian Ketumpatan)
Lee
Sin Ang* & Shukri Sulaiman
Physical
Sciences Programme, School of Distance Education
Universiti
Sains Malaysia, 11800 Penang, Malaysia
Mohamed
Ismail Mohamed-Ibrahim
Chemical
Sciences Programme, School of Distance Education
Universiti
Sains Malaysia, 11800 Penang, Malaysia
Received:
13 May 2011 / Accepted: 7 October 2011
ABSTRACT
The
effects of spin contamination on the stability and the spin densities of a
model of graphene in the Hartree-Fock wavefunction (HF), Møller-Plesset
perturbation theory (second order, MP2 and fourth order, MP4) and density
functional theory (B3LYP and PBEPBE) are reported. It was found that the
Hartree-Fock and MP2 wavefunctions of graphene suffer from the contamination
from higher spin states and spin projection method failed to project out the
spin contaminants. The spin density from HF was overestimated, while for MP2 it
has the wrong trend. B3LYP and PBEPBE wave functions however have negligible
contamination for higher spin states. Comparison with reported results showed
that the spin
densities
at the center of the molecule from the pure functionals of PBEPBE were
underestimated. Based on the comparison made, it was concluded that among the
methods considered, the suitable one for use in the calculations of pristine graphene
was B3LYP.
Keywords:
Density functional theory; grapheme; Hartree-Fock; Møller-Plesset perturbation
theory; spin
contamination
ABSTRAK
Kesan
pelumusan spin ke atas kestabilan dan ketumpatan spin di dalam fungsi gelombang
Hartree-Fock (HF), teori gangguan Møller-Plesset (tertib kedua, MP2 dan tertib
keempat, MP4) dan teori fungsi ketumpatan (B3LYP dan PBEPBE) bagi model grafen
dilaporkan. Didapati bahawa fungsi gelombang HF dan MP2 bagi grafen mengalami
pelumusan daripada keadaan spin lebih tinggi dan kaedah projeksi gagal
mengeluarkan pelumusan putaran. Nilai ketumpatan spin daripada HF adalah
terlebih anggar, manakala untuk MP2 ia mempunyai corak yang salah. B3LYP dan
PBEPBE mempunyai pelumusan spin yang boleh diabaikan. Perbandingan dengan keputusan yang telah
dilaporkan menunjukkan bahawa ketumpatan spin pada bahagian tengah molekul daripada
kefungsian tulen PBEPBE adalah terkurang anggar. Berdasarkan perbandingan yang
dilakukan, disimpulkan bahawa antara kaedah-kaedah yang dipertimbangkan, B3LYP
merupakan kaedah yang sesuai untuk pengiraan melibatkan grafen tulen.
Kata kunci: Grafin; Hartree-Fock;
pencemaran putaran; teori gangguan Møller-Plesset; teori fungsi ketumpatan
REFERENCES
Amos,
T. & Snyder, L.C. 1964. Unrestricted Hartree-Fock Calculations. I. An
improved method of computing spin properties. Journal of Chemical Physics 41:
1773-1783.
Andrews,
J.S., Jayatilaka, D., Bone, R.G.A., Handy, N.C. & Amos, R.D. 1991. Spin
contamination in single-determinant wave functions. Chemical Physics Letters 183: 423-431.
Baker,
J., Scheiner, A. & Andzelm, J. 1993. Spin contamination in density functional
theory. Chemical Physics Letters 216: 380-388.
Burnham,
D.R. 1969. Spin contamination in PPP unrestricted Hartree-Fock wave functions. Theoretical
Chemistry Accounts: Theory, Computation and Modeling (Theoretica Chimica
Acta) 13: 428-432.
Chen,
W. & Schlegel, H.B. 1994. Evaluation of S2 for correlated wave functions
and spin projection of unrestricted Møller-Plesset perturbation theory. Journal
of Chemical Physics 101: 5957-5968.
Chuang,
Y.-Y., Coitino, E.L. & Truhlar, D.G. 1999. How should we calculate
transition state geometries for radical reactions? the effect of spin
contamination on the prediction of geometries for open-shell saddle points. Journal
of Physical Chemistry A 104: 446-450.
Claxton,
T.A. & McWilliams, D. 1970. The restriction of spin contamination in
unrestricted Hartree Fock wave functions. Theoretical Chemistry Accounts:
Theory, Computation, and Modeling (Theoretica Chimica Acta) 16:
346-350.
Cohen,
A.J., Tozer, D.J. & Handy, N.C. 2007. Evaluation of <S2> in
density functional theory. Journal of Chemical Physics 126: 214104.
Cramer,
C.J., Dulles, F.J., Giesen, D.J. & Almlöf, J. 1995. Density functional
theory: excited states and spin annihilation. Chemical Physics Letters 245:
165-170.
Cremaschi,
P., Gamba, A., Morosi, G. & Simonetta, M. 1976. Influence of spin
contamination and basis set on electrostatic potential and Hfs coupling
constants of organic radicals. Theoretical Chemistry Accounts: Theory,
Computation, and Modeling (Theoretica Chimica Acta) 41: 177-182.
Davidson,
E.R. & Clark, A.E. 2005. Spin polarization and annihilation for radicals
and diradicals. International Journal of Quantum Chemistry 103:
1-9.
Dias,
J.R. 2008. Resonance-theoretic calculation of the ground state spin density of
the π-system of edge atoms on grapheme nanodots and nanoribbons. Chemical
Physics Letters 467: 200-203
Frisch,
M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.
R., Montgomery, J.J.A., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M.,
Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G.,
Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K.,
Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O.,
Nakai, H., Klene,
M.,
Li, X., Knox, J. E., Hratchian, H.P., Cross, J.B., Bakken,V., Adamo, C.,
Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A. J., Cammi,
R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A.,
Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D.,
Strain, M. C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K.,
Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski,
J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin,
R. L., Fox, D.J., Keith, T., Al-Laham, M. A., Peng, C.Y., Nanayakkara, A.,
Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M.W., Gonzalez,
C. & Pople, J. A. 2004. Gaussian 03, Revision E.01, Wallingford CT, Gaussian,
Inc. Gao, X., Zhou, Z., Zhao, Y., Nagase, S., Zhang, S.B. & Chen, Z. 2008.
Comparative Study of Carbon and BN Nanographenes: Ground Electronic States and
Energy Gap Engineering. Journal of Physical Chemistry C 112: 12677-12682.
Geim,
A.K. 2009. Graphene: Status and Prospects. Science 324: 1530-1534.
Geim,
A.K. & Novoselov, K.S. 2007. The rise of graphene. Nature Materials 6:
183-191.
Grafenstein,
J., Kraka, E., Filatov, M. & Cremer, D. 2002. Can unrestricted
density-functional theory describe open shell singlet biradicals? International
Journal of Molecular Sciences 3: 360-394.
Handy,
N. C., Knowles, P.J. & Somasundram, K. 1985. On the convergence of the
Møller-Plesset perturbation series. Theoretical Chemistry Accounts: Theory,
Computation and Modeling (Theoretica Chimica Acta) 68: 87-100.
Hod,
O., Barone, V. & Scuseria, G.E. 2008. Half-metallic graphene nanodots: A
comprehensive first-principles theoretical study. Physical Review B 77:
035-411.
Jiang,
D.-e., Sumpter, B.G. & Dai, S. 2007. First principles study of magnetism in
nanographenes. Journal of Chemical Physics 127: 124703-5.
Kudin,
K.N. 2008. Zigzag Graphene Nanoribbons with Saturated Edges. ACS Nano 2:
516-522.
Li,
X. & Paldus, J. 2000. Effect of spin contamination on the prediction of
barrier heights by coupled-cluster theory: F+H2>HF+H reaction. International
Journal of Quantum Chemistry 77: 281-290.
Liu,
B., Jia, D., Meng, Q. & Rao, J. 2007. A novel method for preparation of
hollow carbon spheres under a gas pressure atmosphere. Carbon 45:
668-670.
Löwdin,
P.-O. 1955. Quantum theory of many-particle systems. III. Extension of the
Hartree-Fock scheme to include degenerate systems and correlation effects. Physical
review 97: 1509.
Menon,
A.S. & Radom, L. 2008. Consequences of spin contamination in unrestricted
calculations on open shell species: effect of hartree-fock and møller-plesset contributions
in hybrid and double-hybrid density functional theory approaches Journal of
Physical Chemistry A 112: 13225-13230.
Montoya,
A., Truong, T.N. & Sarofim, A.F. 2000. Spin contamination in hartree fock
and density functional theorywave functions in modeling of adsorption on
graphite. Journal of Physical Chemistry A 104: 6108-6110.
Nandi,
P. K., Kar, T. & Sannigrahi, A. B. 1996. Effect of spin contamination in
UHF wavefunctions on charge density based local quantities. Journal of
Molecular Structure: THEOCHEM 362: 69-75.
Novoselov,
K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S. V.,
Grigorieva, I.V. & Firsov, A.A. 2004. Electric field effect in atomically
thin carbon films. Science 306: 666-669.
Novoselov,
K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S. V.
& Geim, A.K. 2005. Two-dimensional atomic crystals. Proceedings of the
National Academy of Sciences of the United States of America 102:
10451-10453.
Peralta-Inga,
Z., Murray, J.S., Edward Grice, M., Boyd, S., O’Connor, C. J. & Politzer,
P. 2001. Computational characterization of surfaces of model graphene systems. Journal
of Molecular Structure: THEOCHEM 549: 147-158.
Plakhutin,
B., Gorelik, E., Breslavskaya, N., Milov, M., Fokeyev, A. A., Novikov, A.,
Prokhorov, T., Polygalova, N., Dolin, S. & Trakhtenberg, L. 2005. Anomalous
values of Ŝ2 before and after annihilation of the first spin contaminant in
UHF wave function. Journal of Structural Chemistry 46: 195-203.
Schlegel,
H.B. 1986. Potential energy curves using unrestricted Møller-Plesset
perturbation theory with spin annihilation. Journal of Chemical Physics 84:
4530-4534.
Schlegel,
H.B. 1988. Møller-Plesset perturbation theory with spin projection. Journal
of Physical Chemistry 92: 3075-3078.
Sendt,
K. & Haynes, B.S. 2005. Density functional study of the chemisorption of O2
on the zig-zag surface of graphite. Combustion and Flame 143: 629-643.
Sendt,
K. & Haynes, B.S. 2007. Density Functional Study of the Chemisorption of O2
Across Two Rings of the Armchair Surface of Graphite. Journal of Physical
Chemistry C 111: 5465-5473.
Shrivastava,
K.N. 2011. Laughlin’s wave function and angular momentum. International
Journal of Modern Physics B 25: 1301-1357.
Snyder,
L.C.K Amos, T. 1965. Unrestricted Hartree-Fock Calculations. II. Spin
Properties of Pi-Electron Radicals. Journal of Chemical Physics 42:
3670-3683.
Son,
Y.-W., Cohen, M.L. & Louie, S. G. 2006a. Energy Gaps in Graphene Nanoribbons. Physical Review Letters 97: 216803.
Son,
Y.-W., Cohen, M.L. & Louie, S. G. 2006b. Half-metallic graphene
nanoribbons. Nature 444: 347-349.
Wittbrodt,
J.M. & Schlegel, H. B. 1996. Some reasons not to use spin projected density
functional theory. Journal of Chemical Physics 105: 6574-6577.
Xu,
Y.-J. & Li, J.-Q. 2005. The interaction of N2 with active sites of
graphite: A theoretical study. Chemical Physics Letters 406: 249-253.
*Corresponding author; email: lsina2002@hotmail.com
|