Sains
Malaysiana 41(4)(2012): 471-480
Interval Estimations for Parameters of
Gompertz Model with Time-Dependent
Covariate and Right Censored Data
(Anggaran
Selang Keyakinan bagi
Parameter Model Gompertz dengan Kovariat yang
Berubah
Mengikut Masa dan Data Tertapis Kanan)
Kaveh
Kiani*
Laboratory
of Computational Statistics and Operations Research
Institute
for Mathematical Research, Universiti Putra Malaysia, 43400 Serdang, Selangor
D.E.
Malaysia
Jayanthi
Arasan & Habshah Midi
Department
of Mathematics, Faculty of Science, Universiti Putra Malaysia
43400
Serdang, Selangor D.E. Malaysia
Received:
4 March 2010 / Accepted: 7 October 2011
ABSTRACT
There
are numerous parametric models for analyzing survival data such as exponential,
Weibull, log normal and gamma. One of such models is the Gompertz model which
is widely used in biology and demography. Most of these models are extended to
new forms for accommodating different types of censoring mechanisms and different
types of covariates. In this paper the performance of the Gompertz model with
time-dependent covariate in the presence of right censored data was studied.
Moreover, the performance of the model was compared at different censoring
proportions (CP) and sample sizes. Also, the model was compared with fixed
covariate model. In addition, the effect of fitting a fixed covariate model wrongly
to a data with time-dependent covariate was studied. Finally, two confidence
interval estimation techniques, Wald and jackknife, were applied to the parameters
of this model and the performance of the methods was compared.
Keywords:
Gompertz model; jackknife; right censored; time-dependent covariate
ABSTRAK
Terdapat
banyak model parametrik untuk menganalisis data mandirian seperti, eksponen,
Weibull, log muzik dan gamma. Salah satu model tersebut adalah model Gompertz yang digunakan
secara meluas dalam biologi dan demografik. Sebahagian besar daripada model ini
dikembangkan kepada bentuk bentuk baru untuk menampung pelbagai jenis data tertapis
dan kovariat. Dalam makalah ini kebolehan model Gompertz dengan kovariat
yang berubah dengan masa dengan data tertapis dikaji. Selain itu, prestasi
model ini pada kadaran data tertapis dan saiz sampel yang berbeza dibandingkan.
Juga, model ini dibandingkan dengan model kovariat tetap. Di samping itu, kesan
menggunakan model kovariat tetap untuk data dengan kovariat yang berubah dengan
masa dikaji. Akhirnya, dua kaedah selang keyakinan, Wald dan jackknife
diaplikasikan pada parameter model ini dan prestasinya dibandingkan.
Kata
kunci: Data tertapis kanan; jackknife;
kovariat bergantung masa; model Gompertz
REFERENCES
Arasan,
J. 2006. Lifetime of Parallel Component Systems with Dependent Failures and
Multiple Covariates. Ph.D. Thesis, Oxford University. UK.
Arasan,
J. & Lunn, M. 2008. Alternative interval estimation for parameters of
bivariate exponential model with time varying covariate. Comput. Stat. 23:
605-622.
Arasan,
J. & Lunn, M. 2009. Survival model of a parallel system with dependent
failures and time varying covariates. J. Statist. Plann. Inference 139(3):
944-951.
Chen,
Z. 1997. Parameter estimation of the gompertz population. Biom. J. 39:
117-124.
Cox,
D.R. 1975. Partial likelihood. Biometrika. 62: 269-276.
Cox,
D.R. & Hinkley, D.V. 1974. Theoretical Statistics. London: Chapman
and Hall Press.
Doganaksoy,
N. & Schmee, J. 1993. Comparison of approximate confidence intervals for
distributions used in life-data analysis. Technometrics 35(2): 175-184.
Garg,
M.L., Rao, B.R. & Redmond, C.K. 1970. Maximum likelihood estimation of the
parameters of the gompertz survival function. J. R. Stat. Soc. Ser. C. Appl.
Stat. 19: 152-159.
Gompertz,
B. 1825. On the nature of the function expressive of the law of human mortality
and on the new mode of determining the value of life contingencies. Phil.
Trans. R. Soc. A. 115: 513-580.
Johnson,
N.L., Kotz, S. & Balakrishnan, N. 1995. Continuous Univariate
Distributions. Volume 2. New York: Wiley Press.
Kalbfleisch,
J.D. & Prentice, R.L. 1973. Marginal likelihood based on cox’s regression
and life model. Biometrika 60: 267-278.
Kalbfleisch,
J.D. & Prentice, R.L. 2002. The Statistical Analysis of Failure Time
Data. New York: Wiley Press.
Lachin,
J.M. 2000. Biostatistical Methods. The Assessment of Relative Risk. New
York: Wiley Press, 2000.
Makany,
R. 1991. A Theoretical Basis of Gompertz’s Curve. Biom. J. 33: 121-128.
Miller,
R.G. 1974. The Jackknife--A Review. Biometrika 61: 1-17.
Petersen,
T. 1986. Fitting parametric survival models with time dependent covariates. J.
R. Stat. Soc. Ser. C. Appl. Stat. 35(3): 281-288.
Sparling,
Y.H. 2002. Parametric Survival Models for Interval- Censored Data with
Time-Dependent Covariates. Ph.D. Thesis, George Washington University. USA.
Sparling,
Y.H., Younes, N., Lachin, J.M. & Bautista, O.M. 2006. Parametric survival
models for interval-censored data with time-dependent covariates. Biostat.
7(4): 599-614.
Wu,
J.W., Hung, W.L. & Tsai, C.H. 2004. Estimation of Parameters of the
gompertz distribution using the least squares method. Appl. Math. Comput. 158(1):
133-147.
*Corresponding
author; email: kaveh@inspem.upm.edu.my
|