Sains Malaysiana 41(6)(2012): 755–759
Fabrication of Amorphous Silicon Microgap Structure for Energy Saving Devices
(Fabrikasi Struktur Mikrogap Silikon Amorfus untuk Peranti Jimat Tenaga)
T.H.
S. Dhahi, U. Hashim*, M.E.
Ali
& T. Nazwa
Institute
of Nano Electronic Engineering, University Malaysia Perlis, 01000 Kangar, Perlis, Malaysia
Received: 22 February 2011 / Accepted: 18
November 2011
ABSTRACT
We report here the fabrication of microgaps electrodes on amorphous silicon using low cost
techniques such as vacuum deposition and conventional lithography. Amorphous
silicon is a low cost material and has desirable properties for semiconductor
applications. Microgap electrodes have important
applications in power saving devices, electrochemical sensors and dielectric
detections of biomolecules. Physical characterization by scanning electron
microscopy (SEM) demonstrated such microgap electrodes could be produced with high
reproducibility and precision. Preliminary electrical characterizations showed
such structures are able to maintain a good capacitance parameters and constant
current supply over a wide ranging differences in voltages. They have also good
efficiency of power consumption with high insulation properties.
Keywords: Dielectric detection of
biomolecule; microgap electrodes; power saving
devices
ABSTRAK
Kami laporkan fabrikasi elektrod mikrogap silikon amorfus menggunakan teknik kos rendah seperti pemendapan vakum dan litografi konvensional. Silikon amorfus adalah bahan kos rendah dan mempunyai sifat yang berguna dalam aplikasi semikonduktor. Elektrod mikroluang mempunyai aplikasi penting dalam peranti jimat kuasa, sensor elektrokimia dna pengesan dielektrik biomolekul. Ciri-ciri fizikal menggunakan mikroskop electron imbasan (SEM) menunjukkan elektrod mikroluang boleh dihasilkan dengan kebolehulangan yang tinggi dan persis. Pencirian elektrik awal menunjukkan struktur seperti ini boleh menghasilkan parameter kapasitor yang baik dan pembekal arus malar untuk julat voltan yang lebar. Ia juga mempunyai kecekapan penggunaan kuasa dengan sifat penebat yang tinggi.
Kata kunci: Elektrod mikrogap; pengesan biomolekul dielektrik; peranti jimat kuasa
REFERENCES
Brian, R., 2002. Analytical
Techniques in the Sciences (AnTs). Chemical
Sensors and Biosensors, London: John Wiley & Sons Ltd.
Dhahi, Th., Hashim,
U., Ahmed, N.M. & Taib, A. 2010. A review on the Electrochemical Sensors and Biosensors Composed of Nanogaps as Sensing. Material. J. Optoelectr. Advan. Mater. 12:1857-1862.
Dhahi, Th., Hashim, U. & Ahmed, N.M. 2011a. Fabrication and
Characterization of 50nm Silicon Nanogap Structure. J. Science Advan. Mater. 3:233–238.
Dhahi, Th., Hashim, U., Ali, M.E., Ahmed & N.M. & Nazwa, T. 2011b. Fabrication and characterization of lateral polysilicon gap less than 50nm using conventional
lithography process. J. Nano Materials 2011:1-8.
Dhahi, Th., Hashim,
U. & Ahmed, N.M. 2011c. Improvement in Processing of Nano
Structure Fabrication Using O2 Plasma. Inter. J. Nano Electronic and
Materials. 4:37-48.
Dhahi, Th., Hashim, U., & Ahmed, N.M. 2011d. Reactive Ion Etching
(RIE) for Micro and Nanogap Fabrication. J.
Basra Researcher (Sciences) 37:11-20.
Dhahi, Th., Hashim,
U., Ahmed, N.M., Nazwa, T. 2011e. Fabrication
and Characterization of Gold Nanogaps for ss-DNA Immobilization and Hybridization Detection. J.
New Mat. Electrochem. Systems 14:191-196.
Dhahi, Th., Hashim, U., Nazwa, T. &
Ahmed, N.M. 2011f. Preparation of Polysilicon Micro Gap
Structures for Biomoleculs detection. Masaum J. Basic App. Sci. 2:1-5.
Dhahi, Th., Hashim,
U., Ahmed, N.M., Ali, M.E. & Nazwa, T. 2011g. Electrical Characterization of In-House Fabricated Polysilicon Micro-Capacitance for Yeast Concentration
Measurement. J. Eng. Tech. Research In press.
Dhahi, Th., Ali, M.E., Hashim,
U., Alaa’eddin & Nazwa,
T. 2011h. 5nm gap via conventional photolithography and pattern-size reduction
technique. Int. J. Phys. Sci. In press.
Hart, J.P., Crew, A.,
Crouch, E., Honeychurch, K.C. & Pemberton, R.M.
2004. Some recent designs and developments of screen-printed carbon
electrochemical sensors/biosensors for biomedical, environmental, and
Industrial analyses. Anal. Lett. 37:
789-830.
Ishiji, T., Matsuda, H. &
Takahashi, K. 2004. Amperometric Electrochemical Gas Sensor for Monitoring of Sulfur Dioxide 426 in Volcanic
Gas. Chemical Sensors B 20:426.
Jing, T.,
Goodman, C. A., Drewery, J., Cho, G., Hong, W.S.,
Lee, H., Kaplan, S.N., Perez-Mendez, V. and Wildermuth D. 1996. Detection of
charged particles and X-rays by scintillator layers coupled to amorphous
silicon photodiode arrays. Nuclear Instruments and Methods in Physics
Research A 368: 757-764.
Kakinuma, H., Sakamoto, M., Kasuya, Y. & Sawai, H. 1990. Characteristics of Cr Schottky amorphous silicon photodiodes and their application to linear image sensors. IEEE Trans. Electron Devices 37:128-133.
Pleskov, E., Evstefeeva, V. & Baranov, A.M. 2002. Threshold effect of
admixtures of platinum on the electrochemical activity of amorphous
diamond-like carbon thin films. Diamond and Related Materials 11:1518–1522.
Powell, M.J., Hughes,
J.R., Bird, N.C., Glasse, C. & King, T.R. 1998. Seamless tiling of amorphous silicon
photodiode-TFT arrays for very large area X-ray image sensors [digital
radiography]. Medical Imaging, IEEE Transactions 17:1080-1083.
Ristova, M., Kuo, Y. & Lee, H.H. 2003. Study of hydrogenated amorphous silicon
thin films as a potential sensor for He-Ne laser light detection. App. Sur.
Sci. 218:44-53.
Schropp, R. & Zeman, M. 1998. Amorphous and Microcrystalline Silicon Solar Cells: Modeling, Materials, and
Device Technology. Massachusetts, Kluwer AcademicPublishers, pp. 3.
Street, R. 2000. Technology and
Applications of Amorphous Silicon, R.A. Street (ed.) New York: Springer, p. 157.
Tan, H.S. & Castner,
T.G. 1981. Piezocapacitance measurements of
phosphorous- and antimony-doped silicon: Uniaxial strain-dependent donor polarizabilitie. Phys. Rev. B.
23:3983–3999.
Westfield, R.L. 1999. Proceedings
of the Fourth Symposium on Thin Film Transistor Technologies. In: Y. Kuo (ed.), PV 98-22, Electrochemical Society Inc.
pp. 369.
Xing, C., Zheng, G., Yang, G., Jie, L.,
Min-Qiang, L., Jin-Huai, L.
& Xing-Jiu, H. 2010. Electrical Nanogap Devices for Biosensing. Materials Today 13:28-41.
*Correspondence author; email: uda@unimap.edu.my
|