Sains Malaysiana 41(7)(2012): 815–828

 

Activity Levels of 210Po in the Coastal Area of Kapar, Malaysia, Close to a

Coal-Fired Power Plant

(Aras Aktiviti210Po di Kawasan Pantai Kapar, Malaysia yang Berhampiran

Stesen Jana Elektrik Arang Batu)

 

Asnor Azrin Sabuti

Marine Science Program, School of Environmental and Natural Resource Sciences,

Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor D.E.,

Malaysia

 

Che Abd Rahim Mohamed*

Marine Ecosystem Research Centre (EKOMAR), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor D.E. Malaysia

 

Received: 30 September 2011 / Accepted: 21 February 2012

 

 

ABSTRACT

The activity concentration of 210Po from six different samples consisting of raw charcoal, surface sediment, rainwater (suspended solids (SSrw) and dissolved phase (Drw) and estuarine water (suspended solids (SSew) and dissolved phase (Dew)), were analyzed. The activity concentration of 210Po in solid samples was between 7.63 ± 0.67 and 744.28 ± 21.12 Bqkg-1 and in dissolved samples varied between 0.34 ± 0.03 and 86.33 ± 6.51 mBqL-1. On average, 210Po activity in SSrw sample was the highest, at nearly three times its original form (charcoal). SSew and surface sediment samples were similarly distributed between 15th March and 1st August samplings, but were relatively lower than charcoal and SSrw samples. The natural meteorological variability also enhanced 210Po distribution and dispersion to a few kilometers from the coal-fired power plant.

 

Keywords: 210Po; coal-fired power plant; meteorological variability; solid and dissolved samples

 

ABSTRAK

Kepekatan aktiviti210Po daripada enam sampel yang berbeza merangkumi arang batu mentah, permukaan sedimen, air hujan (pepejal terampai (SSrw) dan fasa terlarut (Drw)) dan air estuari (pepejal terampai (SSew) dan fasa terlarut (Dew)) telah dianalisis di dalam kajian ini. Kepekatan aktiviti 210Po di dalam sampel pepejal berada dalam julat 7.63 ± 0.67 dan 744.28 ± 21.12 Bqkg-1. Manakala pada sampel terlarut pula beubah-ubah di antara 0.34 ± 0.03 dan 86.33 ± 6.51 mBqL-1. Secara purata, aktiviti 210Po di dalam sampel SSrw adalah yang tertinggi, hampir tiga kali ganda daripada bentuk asalnya (arang batu). Sampel SSew dan permukaan sedimen mempunyai taburan yang sekata di antara persampelan antara 15 Mac dan 1 Ogos, namun secara relatifnya adalah rendah berbanding sampel-sampel arang batu dan SSew. Pengedaran dan penumpukan juga berbeza-beza bergantung kepada variasi iklim di lokasi kajian. Kajian ini menunjukkan penumpukan 210Po di kawasan kajian kelihatan tinggi semasa monsun barat daya berbanding monsun timur laut, yang disebabkan oleh keadaan meteorologi masing-masing. Seterusnya, perubahan meteorologi secara semula jadi juga meningkatkan taburan dan edaran 210Po kepada beberapa kilometer daripada stesen janaelektrik arang batu tersebut.

 

Kata kunci: 210Po; perubahan meteorologi; polonium; sampel pepejal dan terlarut; stesen janakuasa arang batu

REFERENCES

 

Al-Masri, M.S., Al-Karfan, K., Khalili, H. & Hassan, M. 2006. Speciation of 210Po and 210Pb in air particulates by sequential extraction. Journal of Environmental Radioactivity 91: 103-112.

Balkanov, A. & Sorensen, J.H. 2001. Parameterisation of radionuclide deposition in atmospheric long-range transport modelling.Physics and Chemistry of the Earth (B) 26: 787-799.

Baskaran, M. & Shaw, G.E. 2001. Residence times of arctic haze aerosols using the concentrations and activity ratios of 210Po, 210Pb and 7Be. Journal of Aerosol Science 32: 443-452.

Baxter, L.L. 1993. Ash deposition during biomass and coal combustion: A mechanistic approach. Biomass and Bioenergy 2: 85-102.

Beck, H.L. 1989. Radiation exposures due to fossil fuel combustion.Radiation Physics and Chemistry 34(2): 285-293.

Beck, H.L. & Miller, K.M. 1980. Some radiological aspects of coal combustion.IEEE Transactions on Nuclear Science 27(1): 689-694.

Carvalho, F.P. 1995. Origins and concentrations of 222Rn, 210Pb, 210Bi and 210Po in the surface air at Lisbon, Portugal, at the Atlantic edge of the European continental landmass.Atmospheric Environment 29: 1809-1819.

Carvalho, F.P. 1997. Distribution, cycling and mean residence time of 226Ra, 210Pb and 210Po in the Tagus estuary.Science of Total Environment 196: 151-161.

Eisenbud, M. & Gesell, T.F. 1997. Environmental Radioactivity: From Natural, Industrial, and Military Sources. 4th Ed. New York: Academic Press.

Flues, M., Camargo, I.M.C., Figueiredo-Filho, P.M., Silva, P.S.C. & Mazzilli, B.P. 2007. Evaluation of radionuclides concentration in Brazilian coals.Fuel 86: 807-812.

Flues, M., Camargo, I.M.C., Silva, P.S.C. & Mazzilli, B.P. 2006. Radioactivity evaluation of coal and ashes from Figueira coal power plant in Brazil.Journal of Radioanalytical and Nuclear Chemistry 270: 597–602.

Flues, M., Moraes, V. & Mazzilli, B.P. 2002. The influence of a coal-fired power plant operation on radionuclide concentrations in soil. Journal of Environmental Radioactivity 63: 285-294.

 

Flynn, W.W. 1968. The determination of low levels of polonium-210 in environmental materials.Analytica Chimica Acta43: 221-227.

Garland, J.A. & Wakeford, R. 2007. Atmospheric emissions from the Windscale accident of October 1957.Atmospheric Environment 41: 3904-3920.

Karangelos, D.J., Petropoulos, N.P., Anagnostakis, M.J., Hinis, E.P. & Simopoulos, S.E. 2004. Radiological characteristics and investigation of the radioactive equilibrium in the ashes produced in lignite-fired power plants. Journal of Environmental Radioactivity 77: 233-246.

Martin, P. 2003. Uranium and thorium series radionuclides in rainwater over several tropical storms. Journal of Environmental Radioactivity 65: 1-18.

Martinez-Aguirre, A., Moron, M.C. & Garcia-Leon, M. 1991. Measurements of U- and Ra-isotopes in rainwater samples.Journal of Radio analytical and Nuclear Chemistry152: 37-46.

Mas, J.L., Garcia-Leon, M., Garcia-Tenorio, R. & Bolivar, J.P. 2007. Radionuclide concentrations in water. In Radionuclides Concentrations in Food and the Environment. (eds.) by Pöschl, M. & Nollet, L.M.L. (eds.) Florida: Taylor andFrancis Group.

MMD (Malaysian Meteorological Department). 2008. Buletin cuaca bulanan. http://www.met.gov.my/malay/penerbitan/penerbitan.html.

Monte, L., Brittain, J.E., Håkanson, L., Heling, R., Smith, J.T. & Zheleznyak, M. 2003. Review and assessment of models used to predict the fate of radionuclides in lakes.  Journal of Environmental Radioactivity 69: 177-205.

Narita, H., Harada, K., Burnett, W.C., Tsunogai, S. & McCabe, W.J. 1989. Determination of 210Pb, 210Bi and  210Po in natural waters and other materials by electrochemical separation. Talanta 36: 925-929.

Papastefanou, C. 1996. Radiological impact from atmospheric releases of 226Ra from coal-fired power plants.Journal of Environmental Radioactivity 32: 105-114.

Papastefanou, C. 2006. Residence time of tropospheric aerosols in association with radioactive nuclides.Applied Radiation and Isotopes 64: 93-100.

Poet, S.E., Moore, H.E. & Martell, E.A. 1972. Lead-210, bismuth-210 and polonium-210 in the atmosphere: accurate ratio measurement and application to aerosol residence time determination. Journal of Geophysical Research 77(33): 6515-6525.

Sholkovitz, E.R., Boyle, E.A. & Price, N.B. 1978. The removal of dissolved humic acids and iron during estuarine mixing. Earth and Planetary Science Letters 40: 130-136.

Skwarzec, B., Ulatowski, J., Struminska, D.I. & Falandysz, J. 2003. 210Po in the phytobentos from Puck Bay. Journal of Environmental Monitoring 5: 308-311.

Skwarzec, B. & Fabisiak, J. 2007.  Bioaccumulation of 210Po in marine birds. Journal of Environmental Radioactivity 93: 119-126.

Sugihara, G., Casdagli, M., Habjan, E., Hess, D., Holland, G. & Dixon, P. 1999. Residual delay maps unveil global patterns of atmospheric nonlinearity and produce improved local forecasts. National Academy of Sciences of the United States of America Proceeding 96: 14210-14215.

Swarzenski, P.W., McKee, B.A., Sorensen, K. & Todd, J.F. 1999. 210Pb and 210Po, manganese and iron cycling across the O2/H2S interface of a permanently anoxic fjord: Framvaren Norway. Marine Chemistry 67: 199-217.

Tateda, Y., Carvalho, F.P., Fowler, S.W. & Miguel, J.C. 2003. Fractionation of 210Po and 210Pb in coastal waters of the NW Mediterranean continental margin. Continental Shelf Research 23: 295-316.

Theng, T.L. & Mohamed, C.A.R. 2005. Activities of 210Po and 210Pb in the water column at Kuala Selangor, Malaysia. Journal of Environmental Radioactivity 80(3): 273-286.

TNB Generation. 2003. Sultan Salahuddin Abdul Aziz Power Station, Kapar. Pamphlet, Selangor.

UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation). 1982. Ionizing Radiation: Sources and Biological Effects. New York: United Nations Scientific Committee on the Effects of Atomic Radiation.

UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation). 1993. Exposure From Natural Sources of Radiation. New York: United Nations Scientific Committee on the Effects of Atomic Radiation.

UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation). 2000. Sources and Effects of Ionizing Radiation. New York: United Nations Scientific Committee on the Effects of Atomic Radiation.

U.S.G.S (United States Geological Survey). 1997. New York: Fact sheet FS-171-97.

Yang, C.H. & Lin, H.C. 1992. Lead-210 and polonium-210 across the frontal region between Kuroshio and East China Sea, northeast of Taiwan. Terrestrial, Atmospheric and Oceanic Sciences 3(3): 379-394.

 

*Corresponding author; email: carmohd@ukm.my

 

 

previous