Sains Malaysiana 41(7)(2012): 841–846
Application of a
Simple Mono Window Land Surface Temperature Algorithm
from Landsat ETM+ Over Al Qassim, Saudi Arabia
(Aplikasi Algoritma Tetingkap Mono Suhu Permukaan Tanah Daripada Landsat
ETM+ bagi Al QAssim, Saudi Arabia)
H.S.
Lim*, M. Z. Mat Jafri & K. Abdullah
School
of Physics, Universiti Sains Malaysia, Minden 11800 Penang, Malaysia
Sultan Alsultan
Remote
Sensing Center of Environment Consultant, ISPRS, commission 7 WGVII/7
Middle
East Coordinator, Malaz, Al Nurii St., P.O.
Box. 92038
Riaydh City
11653, Saudi Arabia
Received:
12 April 2011 / Accepted: 21 February 2012
ABSTRACT
This study was conducted to retrieve the
land surface temperature (LST) from Landsat ETM+ data
for Al Qassim, Saudi Arabia. The proposed technique
employed a mono window LST algorithm for retrieving
surface temperature from Landsat ETM+. The
land surface emissivity and solar angle values were needed in order to apply
these in the proposed algorithm. The surface emissivity values were computed
based on the NDVI values. The LST values
derived from ATCOR2_T in the PCI Geomatica image
processing software was used for algorithm calibration. The results showed a
high correlation coefficient (R) and low root-mean-square error (RMS) between
the LST values retrieved from the proposed
algorithm and ATCOR2_T. This study indicated that the proposed algorithm is
capable of retrieving accurate LST values
and the derived information can be used in the environmental impact assessment
for Al Qassim area.
Keywords: Algorithm; ATCOR2_T; LST
ABSTRAK
Kajian ini dilakukan dengan mendapatkan suhu permukaan tanah (LST) daripada data Landsat ETM+ untuk Al Qassim, Arab Saudi. Teknik yang dicadangkan ini menggunakan algoritma tetingkap mono LST untuk mendapatkan suhu permukaan daripada Landsat ETM+. Nilai pancaran permukaan tanah dan nilai-nilai sudut suria diperlukan untuk melaksanakan dalam algoritma yang dicadangkan. Nilai pancaran permukaan tersebut dikira berdasarkan nilai NDVI. Nilai LST berasal daripada ATCOR2_T dalam perisian computer Geomatica PCI digunakan untuk kalibrasi algoritma. Hasilnya menunjukkan pekali korelasi yang tinggi (R) dan nilai sisihan punca min kuasa dua yang rendah (RMS) antaraLST nilai dianggarkan daripada algoritma yang dicadangkan dan ATCOR2_T. Kajian ini menunjukkan bahawa algoritma yang dicadangkan mampu mendapatkan nilaiLST dengan kejituan yang tingggi dan maklumat yang diperoleh boleh digunakan dalam penilaian kesan persekitaran untuk kawasan Al Qassim.
Kata kunci: Algorima; ATCOR2_T; LST
REFERENCES
AlSultan, S., Lim, H.S. MatJafri, M.Z. & Abdullah, K. 2005a. An algorithm for land
surface temperature analysis of remote sensing image coverage over AlQassim, Saudi Arabia, Proceeding of the FIG Working
Week 2005 and 8th International Conference for Global Spatial Data
Infrastructure (GSDI–8) – From Pharaohs to Geoinformatics,
Intercontinental Semiramis, Cairo, TS 27.10
– Remote Sensing and Photogrammetry, Egypt.
AlSultan, S., Lim, H.S. MatJafri, M.Z. & Abdullah, K. 2005b. Land surface temperature
estimation over Palestine and Mediterranean. Proceeding of the Remote
Sensing Arabia–For The Betterment of People. 1st
International Conference on Advanced Remote Sensing for Earth Observation;
Systems, Techniques, and Applications (Proceeding in CD), Riyadh, Kingdom of
Saudi Arabia.
AlSultan, S., Lim, H.S. MatJafri, M.Z. & Abdullah, K. 2008. Algorithm
for Remote Sensing of Land Surface Temperature. Proceeding of the
SPIE Europe Security + Defence. University of Wales Institute, Cardiff, Wales, United Kingdom. Vol. 7114, Electro-Optical Remote Sensing, Photonic Technologies and
Applications II, edited by Gary W. Kamerman, Ove K. Steinvall, Keith L. Lewis,
Thomas J. Merlet and Richard C. Hollins,
71140R, Digital Object Identifier: 10.1117/12.800150.
Chander, G., Markham. B.L. & Barsi, J.A. 2009a. Revised landsat-5 thematic mapper radiometric calibration. IEEE Geosci. Remote Sens. Lett. 4(3):
490–494.
Chander, G., Markham. B.L. & Helder, D.L. 2009b. Summary of current radiometric calibration coefficients for Landsat
MSS, TM, ETM+, and EO-1 ALIsensors. Remote
Sens. Environ. 113: 893–903.
Cresswell, M.P., Morse, A.P., Thomson,
M.C. & Connor. S.J. 1999. Estimating surface air temperature, form Meteosat land surface temperatures, using an empirical
solar zenith angle model. Int. J. Remote Sensing 20(6): 1125-1132.
Cristobal, J.,
Jimenez-Munoz, J.C., Sobrino, J.A., Ninyerola, M. & Pons, X. 2009. Improvements in land
surface temperature retrieval from the Landsat series thermal band using water vapor and air temperature, J. Geophys.
Res. 114: D08103, doi:10.1029/2008JD010616.
Lim, H.S., Mat Jafri, M.Z.,
Abdullah, K., Daraigan, S.G., Hashim,
S.A. & Saleh, N.M. 2006. Land surface temperature estimation from Landsat TM thermal
measurement over Penang, Proceeding of the Young Researcher Conference on
Applied Sciences (CAS 2006), Subang: Malaysia,291 - 293.
Lim, H.S., MatJafri, M.Z.,
Abdullah, K., Saleh, N.M. & AlSultan,
S. 2007. Application of Remote Sensing for Land surface temperature retrieval
over Mecca, Proceeding of the SPIE Defense and Security Symposium 2007.
Orlando World Center Marriott Resort and Convention Center, Orlando, Florida,
USA, Volume 6541, Thermosense XXIX, edited by Kathryn
M. Knettel, Vladimir P. Vavilov and Jonathan J. Miles. DOT: 10.1117/12.719062.
Jimenez-Munoz, J.C. & Sobrino J.A. 2008. Split-Window Coefficients for
Land Surface Temperature Retrieval From Low-Resolution Thermal Infrared Sensors. IEEE Geoscience and Remote Sensing Letters 5(4): 806-809.
Jimenez-Munoz, J.C. & Sobrino,
J.A. 2009. A
Single-Channel Algorithm for Land-Surface Temperature Retrieval From ASTERData. IEEE Geoscience and Remote Sensing
Letters 7(1): 176-179.
Jiménez-Muñoz, J.C., Cristóbal, J., Sobrino, J.A., Sòria, G., Ninyerola, M. & Pon, X. 2009. Revision of the Single-Channel Algorithm
for Land Surface Temperature Retrieval From Landsat Thermal-Infrared Data. IEEE Transactions on Geoscience and Remote Sensing 47(1): 339 –
349.
Mallick, Y.,
Kant, Y. & Bharath, B.D. 2008. Estimation
of land surface temperature over Delhi using Landsat-7 ETM+. The
Journal of Indian Geophysical Union 12(3): 131-140.
Sobrino, J.A., Caselles, V. & Becker,
F. 1990. Significance of the remotely sensed
thermal infrared measurements obtained over a citrus orchard. ISPRS Photogrammetric Engineering and Remote Sensing 44:
343– 354.
Sobrino, J.A., Jimenez-Munoz, J.C., El-Kharraz,
J., Gomez, M., Romaguera. M. & Soria,
G., 2004. Single-channel and two-channel methods for land surface
temperature retrieval from DAIS data and its application to the Barrax site. International Journal of Remote Sensing 25(1):
215-230.
Tan, K.C., Lim, H.S., Mat Jafri,
M.Z. & Abdullah, K. 2009. Study
on Land Surface Temperature Based on Landsat Image over Penang Island,
Malaysia, Proceeding of the 6th International Conference Computer Graphics,
Imaging and Visualization 2009 (CGIV 2009), Tianjin, China. 525-529. DOI:
10.1109/CGIV.2009.94.
Tan, K.C., Lim, H.S., Mat Jafri,
M.Z. & Abdullah, K. 2010. Landsat data to evaluate urban expansion and determine land use/land cover
changes in Penang Island, Malaysia. Environmental Earth Sciences 60(7): 1509–1521.
Tan, K.C., Lim, H.S., Mat Jafri,
M.Z. & Abdullah, K. 2011. A
comparison of radiometric correction techniques when evaluating the
relationship between LST and NDVIin Landsat Imagery, Environmental
Monitoring and Assessment 184: 3813-3829.
Tokola, T., Lofman, S. & Erkkila, A. 1999. Relative calibration of multitemporal landsat data for forest cover change detection. Remote
Sens. Environ. 68: 1–11.
Vicente-Serrano, S.M., Perez-Cabello, F. & Lasanta, T. 2008. Assessment of radiometric correction techniques in analyzing
vegetation variability and change using time series of Landsat images. Remote
Sens. Environ. 112: 3916–3934.
Wan, Z. & Snyder, W. 1996. MODIS Land-surface
Temperature Algorithm Theoretical Basis Document (LST ATBD), version 3.2.
Yang, J.S. & Wang, Y Q. 2002. Estimation of land surface temperature using Landsat–7
ETM+ thermal infrared and weather station data, Proceedings of Huangshan International Thermal Infrared Remote Sensing
Workshop, July 14–17 Huangshan, Anhui, P.R.China.
*Corresponding author;
email: hslim@usm.my
|