Sains Malaysiana 41(7)(2012):
871–877
Emerging Trends in Modification of Dietary Oils
and Fats, and Health
Implications - A Review
(Tren Baru dalam Pengubahsuaian Lemak dan Minyak Diet serta Implikasi Kesihatan)
Pradeep Puligundla1,
Prasad Sheikhar Variyar2, Sanghoon Ko1*
& Vijaya Sarathi Reddy Obulam3
1Department of Food
Science and Technology, Sejong University, 98 Gunja-dong, Gwangjin-gu
Seoul 143-747, Korea
2Food Technology
Division, Bhabha Atomic Research Centre, Mumbai 400
085, India
2Department of Biochemistry,
Sri Venkateswara University, Tirupati 517 502, India
Received: 14 December
2011 / Accepted: 30 January 2012
ABSTRACT
ABSTRACT
In recent years, issues regarding safety and wellness of dietary oils and fats have
received major attention. This is particularly so in the case of structured
modified fats, which are being used extensively to meet the product-specific
demand primarily in bakery industry as shortenings, cocoa butter substitutes in
confectionary industry, and in margarine preparation, as butter substitute.
During modification stages, native oils and fats are subjected to different physical and chemical treatments such as fractionation, hydrogenation and
interesterification in order to produce fats with desirable physical as well as
functional properties. Numerous studies have demonstrated the adverse health
effects of these modified oils and fats, especially trans fatty acids, using
animal models as well as human volunteers. Consequently, the decades-old
process of partial hydrogenation of oils has been abandoned in most nations.
However, alternative technologies to hydrogenation are on rise, creating new
trends in modified oils and fats synthesis to cater food industry needs that
may have unforeseeable consequences on human health.
Keywords: Hydrogenation; interesterification; oils and fats
modification; structured lipids; trans fats
ABSTRAK
Sejak beberapa tahun kebelakangan ini, isukeselamatan dan kebaikan
minyak dan lemak dalam diet telah mendapat perhatian. Ini terutamanya dalam kes
lemak terubahsuai berstruktur, yang digunakan secara meluas untuk memenuhi
permintaan khusus, terutamanya sebagai lelemak dalam industri bakeri, pengganti
mentega koko dalam industri gula-gula dan sebagai pengganti mentega dalam
penyediaan marjerin. Semasa peringkat pengubahsuaian, minyak dan lemak asli
melalui perubahan sifat kimia serta fizikal berbezaseperti pemeringkatan,
penghidrogenan, interesterifikasi dan sebagainya bagi menghasilkan lemak dengan
ciri fizikal serta ciri berfungsi yang baik. Banyak kajian ke atas haiwan serta
manusia telah menunjukkan kesan buruk minyak dan lemak yang terubahsuai kepada
kesihatan, terutamanya asid lemak trans. Ini menyebabkan proses penghidrogenan
separa minyak yang telah digunakan bertahun-tahun lamanya tidak diteruskan di
kebanyakan negara. Walau bagaimanapun, penggunaan teknologi alternatif kepada
penghidrogenan semakin meningkat, mewujudkan trend baru dalam minyak terubah suai
dan sintesis lemak untuk memenuhi keperluan industri makanan yang mungkin
mempunyai kesan yang tidak dapat diramalkan ke atas kesihatan manusia.
Kata kunci:
Interesterifikasi; lemak terstruktur; lemak trans; minyak dan lemak terubah
suai; penghidrogenan
REFERENCES
Akoh, C.C. 1998. Fat
replacers. Food Technol. 52: 47-52.
Akoh, C.C., Jennings, B.H.
& Lillard, D.A. 1995. Enzymic modification of trilinolein: incorporation of n-3
polyunsaturated fatty acids. J. Am. Oil Chem. Soc. 72: 1317–1321.
Ascherio, A., Hennekens, C.H., Buring, J.E.,
Master, C., Stampfer, M.J. & Willett, W.C. 1994. Trans
fatty acids intake and risk of myocarclial infarction. Circulation 89: 94-101.
Banik, B.K., Barakat, K.J., Wagle, D.R., Manhas, M.S. & Bose, A.K. 1999. Microwave-assisted
rapid and simplified hydrogenation. J. Org. Chem. 64:
5746–5753.
Basheer, S.,
Mogi, K.I. & Nakajima, M. 1995. Interesterification kinetics of triacylglycerides and fatty acids with
modified lipase in n-hexane. J. Am. Oil Chem. Soc. 72: 511–518.
Berry,
S.E., Miller, G.J. & Sanders, T.A. 2007. The solid fat content
of stearic acid-rich fats determines their postprandial effects. Am. J. Clin. Nutr. 85:
1486–1494.
Bhalla, R.,
Singh, A.K., Pradhan, S. & Unnikumar,
K.R. 2009. Lipids: Structure, Function and Biotechnology Aspects, In A Textbook of
Molecular Biotechnology, edited by Chauhan, A.K.
& Varma, A. pp. 173-209. New Delhi: I.K.
International Pvt. Ltd.
Booyens, J., Louwrens, C.C. & Katzeff,
I.E. 1988. The role of unnatural dietary trans and cis unsaturated fatty acids in the epidemiology of coronary artery disease. Med. Hypotheses 25: 175-182.
Bubeck,
D.M., Fehr, W.R. & Hammond, E.G. 1989. Inheritance of palmitic and stearic acid mutants of soybean. Crop
Sci. 29: 652–656.
Coenen, J.W.E. 1976. Hydrogenation of Edible oils. J. Am. Oil Chem. Soc. 53:
382-389.
Coleman,
M.H. & Macrae A.R. 1977. Rearrangement
of fatty acid esters in fat reaction reactants. German Patent DE
2705608.
De,
B.K. & Patel, J.D. 2010. Modification of palm oil by chemical and
enzymatic catalysed interesterification. J. Oleo Sci. 59: 293-298.
Dian, N.L.H.M., Sundram, K. & Idris, N.A.
2006. DSC study on the melting properties of palm oil, sunflower oil, and palm
kernel olein blends before and after chemical interesterification. J. Am. Oil Chem. Soc. 83:
739-745.
Facclotti, M.T., Bertain, P.B. & Yuan, L. 1999. Improved stearate
phenotype in transgenic canola expressing a modified acyl-acyl carrier protein thioesterase. Nat Biotechnol. 17:
593–597.
Fick, G.N. 1983. Genetics and breeding of sunflower. J. Am. Oil Chem. Soc. 60: 1252-1253.
Finley, J.W., Klemann, L.P., Leveille, G.A., Otterburn, M.S. & Walchak,
C.G. 1994. Caloric availability of salatrim in rats and humans. J. Agric. Food Chem. 42: 495–499.
Gibson, G.R. &
Williams, C.M. 2003. Functional Foods: Concept to Product Cambridge,
England: Woodhead Publishing Limited.
Gunstone, F.D. & Norris,
F.A. 1983. Lipids in Foods: Chemistry, Biochemistry and Technology.
Elmsford, New York: Pergamon Press.
Gupta, R., Rathi, P. & Bradoo, S. 2003.
Lipase mediated upgradation of dietary fats and oils. Crit. Rev. Food Sci. 43: 635-644.
Haraldsson, G.G., Gudmundson, B.O. & Almarsson,
O. 1993. The preparation of homogeneous triacylglycerides of eicosapentaenoic acid and docosahexaenoic acid by lipase. Tetrahedron Lett. 34:
5791–5794.
Hernandez,
J.R., Alvarado, E.D., Charó-alonso, M.A. & Toro-vazquez, J.F. 2007. Physicochemical and rheological
properties of crystallized blends containing trans-free and partially
hydrogenated soybean oil. J. Am. Oil Chem. Soc. 84: 1081-1093.
Higgins, N.W. 2007. Low
trans–sterioiosomer shortening systems. Patent No. US 7,169,430 B2
Huang, K.H. & Akoh, C.C. 1994. Lipase-catalyzed
incorporation of n-3 polyunsaturated fatty acids into vegetable oils. J.
Am. Oil Chem. Soc. 71: 1277–1280.
Hughes, N.E., Marangoni, A.G., Wright, A.J., Rogers, M.A. & Rush,
J.W.E. 2009. Potential food applications of edible oil organogels. Trends Food Sci. Tech. 20: 470-480.
Hui,
Y.H. 2006. Fats Hydrogenation in Food Processing. Handbook of Food Science,
Technology and Engineering. Vol. 4, 156, Fla: CRC Press, Taylor and Francis
group.
King, J.W., Holliday, R.L., List, G.R. & Synder, J.M.
2001. Hydrogenation of vegetable oils using mixtures of supercritical carbon
dioxide and hydrogen. J. Am. Oil Chem. Soc. 78: 107-113.
List, G.R., Mounts, T.L., Orthoefer, F. & Neff, W.E.
1995. Margarine and shortening oils by interesterification of liquid and
trisaturated triglycerides. J. Am. Oil Chem. Soc. 72: 379–382.
List, G.R., Mounts, T.L., Orthoefer, F. & Neff, W.E.
1997. Effect of interesterification on the structure and physical properties of
high-stearic acid soybean oils. J. Am. Oil Chem. Soc. 74: 327-329.
Liu, K., Corliss, G., Orthoefer, F.T. & Brown, E.A.
1997. Properties and applications of specially bred soybean oil. Paper
presented at the 88th American Oil Chemists’ Society Annual Meeting and Expo. Seattle,
WA, May 11–14.
Lopez, C. & Ollivon, M. 2009. Triglycerides obtained by
dry fractionation of milk fat: 2. Thermal properties and polymorphic evolutions
on heating. Chem. Phys. Lipids 159: 1-12.
Lucca, P.A. & Tepper, B.J. 1994. Fat replacer and the
functionality of fat in foods. Trends Food Sci. Tech. 5: 12-19.
Matsuo, T., Sawamura, N., Hashimoto, Y. & Hashida, W.
1981a. Method for producing cocoa butter substitute. U.S. Patent 4,268,527.
Matsuo, T., Sawamura, N., Hashimoto, Y. & Hashida W.
1981b. The enzyme and method for enzymatic transesterification of lipid. Eur.
Patent No.0035883.
Mensink, R.P.M. & Katan, M.B. 1990. Effect of dietary
trans fatty acids on high-density and low-density lipoprotein cholesterol
levels in healthy subjects. New Engl. J. Med. 323: 439-445.
Naglic, M., Smidovnik, A. & Koloini, T. 1998. Kinetics
and catalytic transfer hydrogenation of some vegetable oils. J. Am. Oil
Chem. Soc. 75: 629–633.
O’brien, R.D. 2009. Fats and Oils: Formulating and
Processing for Applications. 3rd ed. Boca Raton, Fla.: CRC Press, Taylor and
Francis Group.
Ong, A.S.H. 1994. Nutritional aspects of palm oil: An
introductory review. Asia Pac. J. Clin. Nutr. 3: 201-206.
Ong, A.S.H., Choo, Y.M. & Ooi, C.K. 1995. Developments
in palm oil. In Developments in Oils and Fats, edited by Hamilton, R.J.
pp. 153-191. Glasgow, UK. Blackie Academic and professional.
Orthoefer, F. 2006. Global Fats and Oils. IFT Annual Conference
+ Food Expo, Orlando, Florida.
Osorio, J., Fernandez-martinez, J., Mancha, M. & Garces,
R. 1995. Mutant sunflowers with high concentration of saturated fatty acids in
the oil. Crop Sci. 35: 739–742.
Przybylski, R. & Mag, T. 2002. Canola/rapeseed oil. In Vegetable
oils in Food Technology, edited by Gunstone, F.D. pp. 98-127. Boca Raton,
USA: CRC press LLC.
Saxena R.K., Ghosh, P.K., Gupta, R., Davidson, W.S., Bradoo
S. & Gulati, R. 1999. Microbial lipases: potential biocatalysts for the
future industry. Curr. Sci. India 77:101–115.
Smidovnik, A., Kobe, J., Leskovsek, S. & Koloini, T.
1994. Kinetics of catalytic transfer hydrogenation of soybean oil. J. Am.
Oil Chem. Soc. 71: 507–511.
Sridhar, R., Lakshminarayana, G. & Kaimal, T.N.B. 1991.
Modification of selected Indian vegetable fats into cocoa butter substitutes by
lipase catalyzed ester interchange. J. Am. Oil Chem. Soc. 68:
726–730.
Strayer, D., Belcher, M., Dawson, T., Delaney, B., Fine, J.,
Flickinger, B., Friedman, P., Heckel, C., Hughes, J., Kincs, F., Liu, L.,
Mcbrayer, T., Mccaskill, D., Mcneill, G., Nugnet, M., Paladini, E., Rosegrant,
P., Tiffany, T., Wainwright, B. & Wilken, J. 2006. Food Fats and Oils,
9th ed, Institute of Shortening and Edible Oils. Washington, D.C.
Sundram, K., Karupaiah, T. & Hayes, K.C. 2007. Stearic
acid-rich interesterified fat and trans-rich fat raise the LDL/HDL ratio and
plasma glucose relative to palm olein in humans. Nutr. Metab. 4:3 doi:
10.1186/1743-7075-4-3.
Tike, M.A. & Mahajani, V.V. 2006. Studies in catalytic
transfer hydrogenation of soybean oil using ammonium formate as donor over 5%
Pd/C catalyst. Chem. Eng. J. 123: 31–41.
Trivedi, R. & Singh, R.P. 2005. Modification of oils and
fats to produce structured lipids. J. Oleo Sci. 54: 423-430.
Versteeg, C., Thomas, L.N., Yep, Y.L. & Papalois, M.
1994. New fractionated milk fat products. Aust. J. Dairy Technol. 49:
57–61.
Yadav, R.P., Saxena, R.K., Gupta, R. & Davidson, W.S.
1998. Lipase production by Aspergillus and Penicillium spp. Folia
Microbiol. 43: 373–378.
Yamane, T. 2000. Lipase-catalyzed synthesis of structured
triacylglycerols containing polyunsaturated fatty acids: Monitoring the
reaction and increasing the yield, In Enzymes in Lipid Modification,
edited by Bornscheur, U.T. pp. 148–169. Wiley-VCH Verlag Gmbh, D-69469
Weinheim (FRG).
Zock, P.L. & Katan, M.B. l992. Hydrogenation
alternatives: effects of trans fatty acids and stearic acid versus linoleic
acid on serum lipids and lipoproteins in humans. J. Lipid Res. 33:
399-4l0.
*Corresponding author, email: sanghoonko@sejong.ac.kr
|