Sains
Malaysiana 41(7)(2012): 893–899
Fotoelektrod
Tungsten Trioksida Terdop Nikel untuk Tindak Balas Pembelahan
Air
Fotoelektrokimia
(Nickel-doped
Tungsten Trioxide Photoelectrodes for Photoelectrochemical
Water
Splitting Reaction)
Ng Kim Hang & Mohammad Bin Kassim
Pusat Pengajian Sains Kimia dan Teknologi Makanan, Fakulti
Sains dan Teknologi,
Universiti Kebangsaan Malaysia, 43600
UKM Bangi, Selangor, Malaysia
Lorna Jeffery Minggu*
Institut Sel Fuel, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
Mohammad Hafizuddin Haji Jumali
Pusat Pengajian Fizik Gunaan, Fakulti
Sains dan Teknologi, Universiti Kebangsaan Malaysia
43600 UKM Bangi, Selangor, Malaysia
Received: 19 October 2011 / Accepted: 30 January 2012
ABSTRAK
Tungsten trioksida (WO3)
merupakan salah satu fotomangkin yang berpotensi dalam aplikasi penjanaan gas
hidrogen daripada tindak balas pembelahan air. Dalam
kajian ini, pelbagai komposisi filem nipis WO3 terdop
nikel dihasilkan pada kaca stanum(IV) oksida terdop
fluorin (FTO) dengan menggunakan asid tungstik dan nikel(II)
asetat sebagai bahan pemula. Selepas disepuhlindap pada 500°C selama 30 min,
sampel filem nipis ini dicirikan dengan menggunakan SEM, XRD,
spektrofotometer UV-Vis serta analisis fotoelektrokimia (PEC). WO3 terdop nikel mempunyai saiz zarah yang lebih besar
berbanding sampel WO3 tulen dan mempunyai struktur hablur
monoklinik. Jurang tenaga WO3 terdop
nikel yang dianggarkan daripada spektrum UV-Vis dengan menggunakan formula Tauc
adalah lebih kecil berbanding jurang tenaga bagi WO3 tulen. Ujian aplikasi PEC di bawah sinaran lampu
xenon menunjukkan kecekapan penghasilan gas hidrogen oleh filem WO3 terdop
nikel yang digunakan sebagai fotoanod telah dipertingkatkan.
Kata kunci: Fotoanod; pembelahan air
secara langsung; penjanaan hidrogen; sel fotoelektrokimia; tungsten trioksida
terdop nikel
ABSTRACT
Tungsten trioxide (WO3) is one
of the photocatalysts with a high potential for application in water splitting
reaction to produce hydrogen gas. In this paper, different compositions of
nickel-doped WO3 thin films on
fluorine-doped tin oxide (FTO) glass were produced
from tungstic acid and nickel(II) acetate. After
annealing at 500°C for 30 min, the thin films were characterized using SEM, XRD, UV-Vis
spectrophotometer and photoelectrochemical (PEC) test.
Ni-doped WO3 exhibited an increased
grain size compared to undoped WO3 and
adopted a monoclinic structure. Optical band gaps calculated with Tauc formula
from UV-Vis absorption data showed a reduction in band gap for Ni-doped WO3. Under
the irradiation of xenon lamp, the efficiency of hydrogen production by
nickel-doped WO3 thin films were improved.
Keywords: Direct water splitting; hydrogen
production; nickel-doped tungsten trioxide; photoanode; photoelectrochemical
cell
REFERENCES
Chawla, A.K., Singhal, S., Gupta, H.O
& Chandra, R. 2009. Influence of nitrogen doping on the sputter-deposited
WO3 films. Thin Solid Films 518: 1430-1439.
Cheng, X.F., Leng, W.H., Liu, D.P.,
Zhang, J.Q. & Cao C.N. 2007. Enhanced photoelectrocatalytic performance of
Zn-doped WO3 photocatalysts for nitrite ions degradation under visible light. Chemosphere 68: 1976-1984.
Dholam, R., Patel, N.,
Adami, M. & Niotekko, A. 2009. Hydrogen production by photocatalytic water-splitting using Cr- or Fe-doped TiO2 composite thin films photocatalyst. International
Journal of Hydrogen Energy 34: 5337-5346.
Enesca, A., Duta, A.
& Schoonman, J. 2007. Study of photoactivity of tungsten trioxide (WO3) for water
splitting. Thin Solid Films 515: 6371-6374.
Esfandarani, M.T., Minggu, L.J., Daud,
W.R.W & Kassim, M.B. 2010. Synthesis and charaterization
of Fe2O3/SiO2/TiO2 composite thin film on different substrates for water
splitting. Journal of New Materials for Electrochemical Systems 13:
333-335.
Fardindoost, S., Iraji
zad, A., Rahimi, F. & Ghasempour, R. 2010. Pd doped WO3 films prepared by
sol–gel process for hydrogen sensing. International Journal of
Hydrogen Energy 35: 854-860.
Gavrilyuk, A.I. 2009. Application of WO3
thin films for enhancement of photolysis in AgCl. Solar Energy Materials
& Solar Cells 93: 1885-1895.
Hameed, A., Gondal,
M.A. & Yamani, Z.H. 2004. Effects of transition metal doping on photocatalytic activity of WO3 for water
splitting under laser illumination: role of 3d-orbitals. Catalysis
Communications 5: 715-719.
Hong, S.J., Jun, H., Borse, P.H. &
Lee, J.S. 2009. Size effect of WO3 nanocrystals for
photooxidation of water in particulate suspension and photoelectrochemical film
systems. International Journal of Hydrogen Energy 34: 3234-3242.
Hutchins, M.G.,
Abu-Alkhair, O., El-Nahass, M.M. & Abd El-Hady, K. 2006. Structural and optical
characterisation of thermally evaporated tungsten trioxide (WO3) thin films. Materials Chemistry and Physics 98: 401-405.
Karuppasamy, K.M. & Subrahmanyam, A.
2008. The electrochromic and photocatalytic properties of electron beam
evaporated vanadium-doped tungsten oxide thin films. Solar Energy Materials
& Solar Cells 92: 1322-1326.
Li, W., Li, J., Wang,
X., Ma, J. & Chen, Q. 2010. Photoelectrochemical and physical properties of WO3 films
obtained by the polymeric precursor method. International Journal of
Hydrogen Energy 35: 13137-13145.
Liu, H., Peng, T., Ke,
D., Peng, Z. & Yan, C. 2007. Preparation and photocatalytic activity of dysprosium doped tungsten trioxide
nanoparticles. Materials Chemistry and Physics 104: 377-383.
Minggu, L.J., Wan, R.W.D. & Mohammad
B. K. 2010. An overview of photocells and photoreactors for
photoelectrochemical water splitting. International Journal of
Hydrogen Energy 35: 5233-5244.
Memar, A., Wan, R.W.D., Hosseini, S.,
Eftekhari, E. & Minggu, L.J. 2010. Study on photocurrent of bilayers
photoanodes using different combination of WO3 and Fe2O3. Solar Energy 84:
1538- 44.
Ni, M., Leung, M.K.H.,
Leung, D.Y.C. & Sumathy, K. 2007. A review and recent developments in
photocatalytic water-splitting using TiO2 for hydrogen production. Renewable
and Sustainable Energy Reviews 11: 401-425.
Nowotny, J., Sorrell,
C.C., Sheppard, L.R. & Bak, T. 2005. Solar-hydrogen: Environmentally safe fuel for the future. International
Journal of Hydrogen Energy 30: 521-544
Patil, P. S., Mujawar, S. H., Inamdar, A.
I. Shinde, P. S., Deshmukh, H. P. & Sadale, S. B. 2005. Structural,
electrical and optical properties of TiO2 doped WO3 thin films. Applied
Surface Science 252: 1643-1650.
Redecka, M., Rekas, M.,
Trenczek-Zajac, A. & Zakrzewska, K. 2008. Importance of the band
gap energy and flat band potential for application of modified TiO2 photoanodes
in water photolysis. Journal of Power Sources 181: 46-55.
Redecka, M., Sobas, P.,
Wierzbicka, M. & Rekas, M. 2005 Photoelectrochemical properties of undoped
and Ti-doped WO3. Physica
B 364: 85-92.
Scarminio, J., Urbano, A. & Gardes,
B. 1999. The Beer-Lambert law for electrochromic tungsten oxide thin films. Materials
Chemistry and Physics 61: 143-146.
Sivakumar, R.,
Jayachandran, M. & Sanjeeviraja, C. 2004. Studies on the effect of substrate
temperature on (VI-VI) textured tungsten oxide (WO3) thin films on glass, SnO2:F substrates by PVD:EBE technique for electrochromic
devices. Materials Chemistry and Physics 87: 439-445.
Solarska, R.,
Alexander, B.D., Braun, A., Jurczakowski, R., Fortunato, G., Stiefel, M.,
Graule, T. & Augustynski, J. 2010. Tailoring the morphology of WO3 films with substitutional
cation doping: Effect on the photoelectrochemical properties. Electrochimica
Acta 55: 7780-7787.
Song, S., Wang, C.,
Hong, F., He, Z., Cai, Q. & Chen, J. 2011. Gallium- and iodine-co-doped titanium
dioxide for photocatalytic degradation of 2-chlorophenol in aqueous solution:
Role of gallium. Applied Surface Science 257: 3427-3432.
Su, L., Dai, Q. &
Lu, Z. 1999. Spectroelectrochemical and photoelectrochemical studies of
electrodeposited tungsten trioxide films. Spectrochimica Acta Part A55:
2179-2185.
Su, L., Wang, H. & Lu, Z. 1998.
All-solid-state electrochromic window of prussian blue and electrodeposited WO3
film with poly(ethylene oxide) gel electrolyte. Material
Chemistry and Physics 56: 226-270.
Sun, Y., Murphy, C.J.,
Reyes-Gil, K.R., Reyes-Garcia, E.A., Thornton, J.M., Morris, N.A. &
Raftery, D. 2009. Photoelectrochemical and structural characterization of carbon-doped WO3 films
prepared via spray pyrolysis. International Journal of Hydrogen Energy 34:
8476-8484.
Tong, M. Dai, G. &
Gao, D. 2001. WO3
thin film sensor prepared by sol-gel technique and its low-temperature sensing
properties to trimethylamine. Materials Chemistry and Physics 69:
176-179.
Yagi, M., Maruyama, S.,
Sone, K., Nagai, K. & Norimatsu, T. 2008. Preparation and
photoelectrocatalytic activity of a nano-structured WO3 platelet film. Journal
of Solid State Chemistry 181: 175-182.
*Corresponding author;
email: lorna_jm@ukm.my
|