Sains Malaysiana 41(8)(2012): 1005–1009
Densification and
Mechanical Properties of Electroconductive Si3N4 -Based
Composites Prepared
by Spark Plasma Sintering
(Penumpatan dan
Sifat-Sifat Mekanik Komposit Berasaskan Si3N4 disediakan
Melalui Pensinteran
Percikan Plasma)
Norhayati
Ahmad*
Department
of Materials Engineering, Faculty of Mechanical Engineering
Universiti
Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia
Hidekazu
Sueyoshi
Department
of Nano-structure and Advanced Materials, Graduate School of Science and
Engineering
Kagoshima
University, 1-21-40 Korimoto, Kagoshima 890-0065 Japan
Received:
25 January 2010 / Accepted: 25 March 2011
ABSTRACT
Si3N4-TiN composites were prepared by conventional powder
processing (SPS1) and in-situ reaction sintering (SPS2). Rapid densification
of SPS was achieved for
sample SPS1 and SPS2 within a few minutes
at low temperature. Sample SPS1 sintered at 1550ºC showed rapid transformation of α to
β Si3N4 while for sample SPS2 sintered at 1350ºC, a significant
degree of α to β Si3N4 transformation was achieved. Homogeneous
distribution of equiaxed TiN grains in matrix Si3N4 resulting in high hardness (21.7 GPa) and
bending strength (621 MPa) for sample SPS1 sintered at 1550ºC. Elongated TiN grains as
the reinforcement of Si3N4 matrix composites was found to increase the toughness (8.39
MPa m1/2) of sample SPS2 sintered at 1350ºC.
The composites prepared by SPS2 sintered at 1250-1350ºC had low electrical resistivity and
could be machined by electrical discharge machining (EDM).
Keywords: Densification; mechanical properties; silicon
nitride-titanium nitride composites; spark plasma sintering
ABSTRAK
Komposit Si3N4-TiN dihasilkan dengan kaedah pemprosesan
serbuk yang lazim (SPS1) dan pensinteran tindak balas in-situ (SPS2). Pemandatan
yang tinggi diperoleh daripada sampel SPS1 dan SPS2 selama
beberapa minit pada suhu yang rendah. Sampel SPS1 yang disinter pada
suhu 1550ºC menunjukkan transformasi daripada α ke β Si3N4 yang pantas, manakala sampel SPS2 yang disinter pada
suhu 1350ºC menunjukkan transformasi α ke β Si3N4 ke tahap yang
signifikan. Taburan butiran TiN yang berbentuk sepaksi secara seragam dalam
matrik Si3N4 memberikan kekerasan
(21.7 GPa) dan kekuatan lenturan (621 MPa) yang tinggi bagi sampel SPS1 yang disinter pada
suhu 1550ºC. Butiran TiN yang berbentuk panjang sebagai penguat dalam matrik
komposit Si3N4 boleh meningkatkan keliatan (8.39 MPa m1/2) bagi sampel SPS2 yang disinter pada
suhu 1350ºC. Sampel SPS2 yang disinter pada suhu 1250-1350ºC mempunyai rintangan
elektrik yang rendah dan boleh dimesin dengan pemesinan nyahcas elektrik (EDM).
Kata kunci: Komposit
silikon nitrat-titanium nitrat; pensinteran percikan plasma (SPS); penumpatan; sifat
mekanikal
REFERENCES
Bellosi, A., Guicciardi, S. &
Tampieri, A. 1992. Development and characterization of electroconductive Si3N4-TiN composites J. Eur.
Ceram. Soc. 9: 83-93.
Bowen, L.J., Carruthers, T.G. &
Brook, R.J. 1978. Hot-pressing of silicon nitride with yttrium oxide and lithium oxide as
additives: J. of the Am. Cer. Soc. 61: 335-339.
Bowen, L.J., Weston, R.J., Carruthers,
T.G. & Brook, R.J. 1978. Hot-pressing and the α-β
phase transformation in silicon nitride. J. of Mat.
Sc. 13: 341-350.
Gao, L., Hong, J.S., Miyamoto, H. &
Torre, S.D.D.L. 1998. Superfast densification of oxide ceramics
by spark plasma sintering. J. Inorg. Mater. 13: 18-22.
Gao, L. & Miyamoto, H. 1997. Spark
Plasma Sintering Technology. J. Inorg. Mater. 12: 129-133.
Kall, P.O. 1988. Quantitative phase
analysis of Si3N4-based Materials Chem. Scr. 28:
439-4368.
Lewis, M.H., Bhatti, A.R., Lumby, R.J.
& North, B. 1980. The microstructure of sintered Si-Al-O-N ceramics, J. of
Mat. Sc. 15: 103-113.
Liu, C.C. & Huang, J.L. 2003. Effect of the electrical discharge machining on strength and
reliability of TiN/Si3N4 composites. Ceram. Inter 29: 679-687.
Mazerolles, L., Feldhoff, A., Trichet,
M. F. & Ricoult, M.B. 2005. Oxidation behaviour of Si3N4-TiN ceramics under dry and humid air at high
temperature. J. of the Eur. Ceram. Soc 25:
1743-1748.
Messier, D.R., Riley, F.L. & Brook,
R. J. 1978. The α/ß silicon nitride phase transformation, J. of Mat. Sc. 13: 1199-1205.
Niihara, K., Morena, R. &
Hasselman, D.P.H. 1982, Evaluation of KIC of brittle solids by the indentation method with low
crack-to-indent ratios. J. Mater Sc. Letter 1: 13-16.
Norhayati Ahmad, Obara, K., Sameshima,
S. & Sueyoshi, H. 2009. Characterization of Si3N4 –TiN
composites prepared by spark plasma sintering, trans. Mater. Res. Soc. Japan 32(4): 793-797.
Norhayati Ahmad & Sueyoshi, H.
2010. Properties of Si3N4 –TiN
Composites Fabricated by Spark Plasma Sintering by Using a Mixture of Si3N4 and Ti Powders. Ceram.
Int. 36: 491-496.
Norhayati Ahmad & Sueyoshi, H.
2011. Microstructure and mechanical properties of silicon nitride-titanium
mitride composites prepared by spark plasma sintering. Materials Research
Bulletin 46: 460-63.
Perera, D.S., Tokita, M. & Moricca, S. 1998. Comparative study of fabrication of Si3N4/SiC composites by spark plasma sintering and
hot isostatic pressing. J. Eur. Ceram. Soc. 18: 401-404.
Salehi, S., Biest, O.V. & Vleugels, J. 2006. Electrically conductive ZrO2-TiN composites. J. of the Eur. Ceram. Soc. 26. 3173-3179.
Tokita,
M. 1993. Mechanism of spark plasma sintering. J.
Soc. Powder Tech. Jpn. 30(11): 790-804.
Wang, L., Wu, T., Jiang, W., Li, J. & Chen, L. 2006. Consolidation of nano-sized TiN powders by spark plasma sintering. J. Am. Ceram. Soc. 89(5): 1540-1543.
Weiss,
J. & Kaysser, W.A. 1983. Liquid phase sintering in. In: (ed.), Progress in Nitrogen Ceramics, F.L. Riley (ed.) Boston:
Martinus Nijhoff Publishers pp. 169.
*Corresponding author; email: nhayati@fkm.utm.my
|