Sains Malaysiana 41(8)(2012): 1037–1042

 

 

Synthesis of Nickel Nanoparticles Via Non-Aqueous Polyol Method:

Effect of Reaction Time

(Sintesis Mudah dan Pantas Nikel Nanozarah melalui Kaedah Tanpa-Akueus Poliol)

 

N.R. Nik Roselina*

Faculty of Mechanical Engineering, Universiti Teknologi MARA (UiTM) Shah Alam

40450 Shah Alam, Selangor, Malaysia

 

A. Azizan & Z. Lockman

School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia

Engineering Campus, 14300 Nibong Tebal, Pulau Pinang, Malaysia

 

Received: 26 May 2011 / Accepted: 19 March 2012

 

ABSTRACT

This paper presents facile and rapid synthesis route of Ni nanoparticles at approximately 180°C in the mixture composed of ethylene glycol (EG) with hydrazine (N2H4) as a reducing agent. X-ray diffraction (XRD) analysis revealed that Ni2+ can be reduced completely to Ni metal in 15 min. XRD analysis also indicated that the as-synthesized nanoparticles were pure Ni with face-centered cubic (fcc) crystal structure. Transmission electron microscopy (TEM) results showed that the sample with heating duration of 15 min has the most narrow size distribution and the size increased as the reaction time increased.

 

Keywords: Nanoparticles; nickel; polyol

 

ABSTRAK

Kertas ini melaporkan cara mudah dan pantas bagi menyediakan nanozarah Ni pada suhu lebih kurang 180°C dalam campuran yang terdiri daripada etilena glikol (EG) dan hidrazina sebagai agen penurunan. Analisis XRD menunjukkan Ni2+ boleh diturunkan kepada logam Ni sepenuhnya dalam masa 15 minit. Ia juga menunjukkan yang terhasil adalah Ni berstruktur kubik bermuka pusat (kbm). Keputusan TEM menunjukkan bahawa sampel yang dipanaskan dengan jangka masa 15 minit menghasilkan partikel dengan taburan saiz paling kecil dan saiz bertambah dengan penambahan masa tindak balas.

 

Kata kunci: Nanozarah; nikel; poliol

REFERENCES

 

Abdel-Aal, E.A., Malekzadeh, S.M., Rashad, M.M., El-Midany, A.A. & El-Shall, H. 2007. Effect of synthesis conditions on preparation of nickel metal nanopowders via hydrothermal reduction technique. Powder Technology 171: 63-68.1042.

 

Ahrenstorf, K., Heller, H., Kornowski, A., Broekaert, J.A.C. & Weller, H. 2008. Nucleation and Growth Mechanism of NixPt1–x Nanoparticles. Advanced Functional Materials 18: 3850-3856.

Bai, L., Yuan, F. & Tang, Q. 2008. Synthesis of nickel nanoparticles with uniform size via a modified hydrazine reduction route. Materials Letters 62: 2267-2270.

Chang, H. & Su, H.T. 2008. Synthesis of magnetic property of Ni nanoparticles. Review on Advanced Materials Science 18: 667-675.

Couto, G.G, Klein, J.J., Schreiner, W.H., Mosca, D.H., Oliveira & Zarbin. 2007. Ni nanoparticles obtained by a modified polyol process: Synthesis, characterization and magnetic properties. Journal of Colloid and Interface Science 311: 461-468.

Grisaru, H., Palchik, O. & Gedanken, A. 2003. Microwave-Assisted polyol synthesis of CuInTe2 and CuInSe2 nanoparticles. Inorganic Chemistry 42: 7148-7155.

Hedge, M.S, Larcher, D., Dupont, L., Beaudoin, B., Tekaia- Elhsissen, K. & Tarascon, J. M. 1996. Synthesis and chemical reactivity of polyol prepared monodisperse nickel powders. Solid State Ionics 93: 33-50.

Hu. H. & Sugawara, K. 2009. A-catalyzed synthesis of ultrafine nickel nanoparticles: A facile way to size control. Materials Letters 63: 940-942.

Liu, D., Ren, S., Wu, H., Zhang, Q. & Wen, L. 2008. Morphology control in synthesis of nickel nanoparticles in the presence of polyvinylpyrrolidone (PVPK30). Journal of Materials Science 43: 1974-1978.

Osuna, J., De Caro, D., Amiens, C. & Chaudret, B. 1996. Synthesis, characterization, and magnetic properties of cobalt nanoparticles from an organometallic precursor. Journal of Physical Chemistry 100(35): 14571-14574.

Park, B.K., Jeong, S., Kim, D., Moon, J, Lim, S. & Kim, J.S. 2007. Synthesis and size control of monodisperse copper nanoparticles by polyol method. Journal of Colloid and Interface Science 2: 417-424.

Saxena, A., Kumar, A. & Mozumdar, S. 2007. Ni-nanoparticles: An efficient green catalyst for chemo-selective oxidative coupling of thiols. Journal of Molecular Catalysis A: Chemical 269: 35-40.

Sidhaye, D.S., Bala, T., Srinath, S., Srikanth, H., Poddar, P., Sastry, M. & Prasad, B.L.V. 2009. Preparation of nearly monodispersed nickel nanoparticles by a facile solution based methodology and their ordered assemblies. Journal of Physical Chemistry C 113: 3426-34299.

Syukri, Ban, T., Ohya, Y. & Takahashi, Y. 2003. A simple synthesis of metallic Ni and Ni-Co alloy fine powders from a mixed-metal acetate precursor. Material Chemistry and Physic 78: 645-649.

Wang, D.P., Sun, D.B., Yu, H.Y., & Meng, H.M. 2008. Morphology controllable synthesis of nickel nanopowders by chemical reduction process. Journal of Crystal Growth 310: 1195–1201.

Xu, R., Xie, T., Zhao, Y. & Li, Y. 2007. Quasi-homogeneous catalytic hydrogenation over monodisperse nickel and cobalt nanoparticles. Nanotechnology 18: 55602-55602.

Zhang, D.E., Ni, X.M., Zheng, H.G., Li, Y., Zhang, X.J. & Yang, Z.P. 2005. Synthesis of needle-like nickel nanoparticles in water-in-oil microemulsion. Materials Letters 59: 2001-2014.

 

 

*Corresponding author; email: roselina_roseley@salam.uitm.edu.my

 

 

 

previous