Sains Malaysiana 41(8)(2012):
939–947
Supervised and
Unsupervised Artificial Neural Networks for Analysis of
Diatom Abundance in
Tropical Putrajaya Lake, Malaysia
(Rangkaian Neural Buatan Diselia dan Tanpa Penyeliaan untuk Analisis Kelimpahan
Diatom di Tasik Tropika Putrajaya,
Malaysia)
M. Sorayya & S. Aishah
Institute
of Biological Sciences (ISB), University of Malaya, 50603 Kuala Lumpur,
Malaysia
B. Mohd. Sapiyan*
Faculty
of Science Computer and Information Technology, University of Malaya,
50603
Kuala Lumpur, Malaysia
Received:
29 June 2011 / Accepted: 31 January 2012
ABSTRACT
Five years of data from 2001 until 2006 of warm unstratified shallow, oligotrophic to mesothropic tropical Putrajaya Lake, Malaysia were used to study
pattern discovery and forecasting of the diatom abundance using supervised and
unsupervised artificial neural networks. Recurrent artificial neural network (RANN) was used for the
supervised artificial neural network and Kohonen Self
Organizing Feature Maps (SOM) was used for unsupervised artificial neural network. RANN was applied for
forecasting of diatom abundance. The RANN performance was measured in terms of root
mean square error (RMSE) and the value reported was 29.12 cell/mL. Classification and clustering by SOM and sensitivity analysis from the RANN were used to reveal
the relationship among water temperature, pH, nitrate nitrogen (NO3-N) concentration,
chemical oxygen demand (COD) concentration and diatom abundance. The results indicated
that the combination of supervised and unsupervised artificial neural network
is important not only for forecasting algae abundance but also in reasoning and
understanding ecological relationships. This in return will assist in better
management of lake water quality.
Keywords: Diatom;
forecasting; recurrent artificial neural network; self organizing maps
ABSTRAK
Data selama lima tahun dari 2001 hingga 2006 bagi tasik tropika yang cetek dan panas, berstatus oligotrof ke mesotropi iaitu Tasik Putrajaya, Malaysia telah digunakan untuk mengkaji penemuan corak dan ramalan kuantiti diatom menggunakan rangkaian neural buatan yang diselia dan tidak diselia. Rangkaian neural buatan berulang (RANN) telah digunakan untuk rangkaian neural buatan diselia dan peta atur sendiri Kohonen (SOM) telah digunakan untuk rangkaian neural buatan tanpa pengawasan.RANN telah digunakan untuk ramalan kuantiti diatom. Prestasi RANN diukur daripada ralat min punca kuasa dua (RMSE) dan nilai yang dilaporkan adalah 29.12 sel/mL. Pengelasan dan kelompok oleh SOM dan analisis kepekaan daripadaRANN digunakan untuk mendedahkan hubungan antara suhu air, pH, kepekatan nitrogen nitrat (NO3-N), keperluan oksigen kimia (COD) dan kuantiti diatom. Keputusan menunjukkan bahawa gabungan rangkaian diselia dan tidak diselia neural buatan adalah penting bukan sahaja untuk ramalan pertumbuhan alga tetapi juga dalam analisis dan pemahaman hubungan ekologi. Ini akan membantu dalam pengurusan yang lebih baik bagi kualiti air tasik.
Kata kunci: Diatom; peta susun sendiri; ramalan; rangkaian neural buatan berulang
REFERENCES
APHA. 1995. Standard
Methods for the Examination of Water and Waste Water. 19th Ed. Washington, D.C: American Public Health
Association.
Bowden, G.J., Dandy,
G.C. & Maier, H.R. 2006. An evaluation of methods for the selection
of inputs for an artificial neural network based river model. Ecological
Informatics Recknagel, F. (ed.) 2nd ed. Berlin:
Springer-Verlag. pp. 275-292.
Carrillo, P., Reche, I., Sánchez-Castillo, P. & Cruz-Pizarro, L.
1995. Direct and indirect effects of grazing on
the Phytoplankton seasonal succession in an oligotrophic lake. Journal
of Plankton Research 17: 1363-1379.
Chon, T.S., Park,
Y.S., Moon, K.H. & Cha, E.Y. 1996. Patternizing communities by using an artificial neural network. Ecological Modelling90: 67-78.
Colasanti, R.L. 1991. Discussions of the possible use of neural network algorithms in ecologicalmodelling. Binary 3: 13-15.
Cybenko, G. 1989. Approximations by superpositions of
sigmoidal functions. Mathematics of Control Signals and Systems 2:
303-314.
Darley, W.M. 1982. Alga
Biology: A Physiological Approach. Oxford London: Blackwell Scientific
Publication.
Edwards, M. &
Morse, D.R. 1995. The potential for computer-aided
identification in biodiversity research. Trends in Ecology and Evoluation10: 153-158.
Elfithri, R., Toriman, M.E., Mokhtar, M.B.
& Juahir, H. 2011. Perspectives and
initiatives on integrated river basin management in Malaysia: A review. The
Social Sciences 6(2): 169-176.
Foody, G.M. 1999.
Application of the self-organizing feature map neural network in community data
analysis. Ecological Modelling120: 97-107.
Gasim, M.B., Toriman, M.E., Rahim, S.A., Islam, M.S., Chek, T.C. & Juahir, H. 2006.
Hydrology and water quality assessment of tasik chini’s feeder rivers, Pahang Malaysia Geografia 3: 1-16.
Gray, N.F. 2010. Water Technology, An Introduction For Environmental Scientists
and Engineers (3rd ed.). Oxford: Elseiver:
747.
Gurbuz, H., Kivrak, E., Soyupak, S. & Yerli, S.V. 2003. Predicting dominant phytoplankton
quantities in reservoir by using neural networks. Hydrobiologia 504: 133-141.
Jeong, K.S., Joo, G.J., Kim, H.W., Ha, K. & Recknagel,
F. 2001. Prediction and elucidation of
phytoplankton dynamics in the Nakdong River (Korea)
by means of a recurrent artificialneural network. Ecological Modelling146: 115-129.
Kingston, J.C. 1982.
Association and distribution of common diatoms in surface samples from Northern
Minnesota peatlands. Nova Hedwigia 73: 333-346.
Kohonen, T. 1989. Self-Organization
and Associative Memory (3rd ed.) Berlin: Springer-Verlag.
Kutty, A.A., Ismail, A.
& Fong, C.S. 2001. A preliminary Study of Phytoplankton at Lake Chini Pahang, Pakistan Journal of Biological Sciences 4(3):
309-313.
Leclercq L. 1988. Utilization
de trios indices, chimique, diatomique et biocénotique, pour l’évaluation de la qualité de l’eau de
la Joncquiere, riviére calcaire polluée par le village
de Doische (Belgique, Prov.
Namur). Mém. Soc. Roy. Bot. Belg. 10: 26-34.
Lek, S., Delacoste, M., Baran, P., Dimopoulos, I., Lauga, J. & Aulagnier, S. 1996. Application of neural
networks to modelling nonlinear relationships in
ecology. Ecological Modelling90:
39-52.
Matlab 2006. The Math Works
Inc. Matlab (Version 6.5.1).
Maier, H.R., Dandy,
G.C. & Burch, M.D. 1998. Use of artificial neural networks for
modeling cyanobacteria Anabaena spp. in the River Murray, South Australia. Ecological Modelling105: 257-272.
Maindonald, J.H. & Braun,
W.J. 2007. Data Analysis and Graphics Using R . An Example-Based Approach. 2nd ed. Cambridge: Cambridge University Press.
Maznah, W. 2010. Perspectives
on the use of algae as biological indicators for monitoring and protecting
aquatic environments, with special reference to Malaysian freshwater ecosystems. Tropical Life Sciences Research 21(2): 51-67.
Maznah, W. & Mansor, M. 1999. Benthic diatoms in the
Pinang River (Malaysia) and its tributaries with emphasis on species diversity
and water quality. International Journal on Algae 1(4): 103-118.
Najah, A., Elshafie, A., Karim, O.A. & Jaffar, O. 2009. Prediction of Johor
river water quality parameters using artificial neural networks. European
Journal of Scientific Research 28(3): 422-435.
Nather Khan, I.S.A. 1985. Studies on the water quality and periphyton community in Linggi River Basin, Malaysia. PhD
Diss., University of Malaya (unpublished)
Nather Khan, I.S.A. 1990.
Assessment of water pollution using diatom community structure and species
distribution: A case study in a tropical river basin. Internationae Revue der gesamten Hydrobiologie and Hydrographie75(3): 317-338.
Nather Khan, I.S.A. 1991. Effect of urban and industrial wastes on species diversity of the
diatom community in a tropical river, Malaysia. Hydrobiologia 224: 175-184.
Patrick, R. 1994. What
are the requirements for an effective biomonitor? In: Biological Monitoring of Aquatic Systems. Loeb, Stanford L and Anne Spacie, eds. pp. 23-29.
Pineda, F. 1987. Generalization
of backpropagation to recurrent neural networks. Physical Review Letters 19(59): 2229-2232.
Principe, J.C., Euliano,
N.R. & Lefebvre, W.C. 1999. Neural and Adaptive Systems:
Fundamentals Through Simulations. N.Y: John Wiley & Sons.
Putrajaya Corporation. 1998. Putrajaya Lake Management Guide. Putrajaya Corporation,
Selangor Darul Ehsan.
Recknagel, F., Welk, A., Kim, B. & Takamura, N. 2006. Artificial
Neural Network Approach to Unravel and Forecast Algal Population Dynamics of
Two Lakes Different in Morphometry and
Eutrophication. In: Recknagel, F.
Ecological Informatics (2nd ed.) NY: Springer-Verlag.
Recknagel, F., Kim, B. & Welk, A. 2005. Unravelling and
prediction of ecosystem behaviours of Lake Soyang (South Korea) in response to changing seasons and
management by means of artificial neural networks. Verh. Internat. Verein. Limnol29(3): 1497-1502.
Recknagel, F. 2001. Applications
of machine learning to ecological modelling. Ecological Modelling146: 303-310.
Reynolds,
C.S. 1984. The Ecology of Freshwater Phytoplankton. Cambridge: Cambridge University Press.
Round,
F.E. 1984. The Ecology of Algae. Cambridge : Cambridge University Press. pp 653.
Salleh, A. 1996. Panduan Mengenali Alga Air Tawar. Kuala Lumpur: Dewan Bahasa dan Pustaka.
Sawyer, C.N., McCarty, P.L. & Parkin,
G.F. 1994. Chemistry for Fnvironmental Engineering. New York: McGraw-Hill.
Schultz, R., Wieland & Lutze,
G. 2000. Neural networks in argroecological modelling—stylish application or helpful tool?. Computers and Electronics in Agriculture 29:
73-97.
Sommer, U. 1989. Nutrient status and nutrient
competition of phytoplankton in a shallow, hypertrophic lake. Limnology
and Oceanography 34(7): 1162-1173.
Talib, A., Abu Hasan, Y. & Abdul Rahman, N.N. 2009. Predicting
biochemical oxygen demand as indicator of river pollution using artificial neural
networks. 18th World IMACS / MODSIM Congress, Cairns, Australia 13-17
July 2009
Thomann, R.V. & Mueller, J.A. 1987. Principles
of Surface Water Quality Modeling and Control New York: Harrper and Row.
Vanni, M.J. & Temte,
J. 1990. Seasonal patterns of grazing and nutrient limitation of phytoplankton
in a eutrophic lake. Limnology and Oceanography 35: 697-709.
WHO.
1987. WHO, UNEP/WHO/UNESCO/WMO Project on Global Environmental Monitoring. GEM Water Operational Guide.
Werner,
D. 1977. The Biology of Diatoms. Bot. Monogr., V. 13. Berkeley and New
York: University of California Press,
Zhang,
G.P., Patuwo, B.E. & Hu, M.Y. 1998. Forecasting
with artificial neural networks: The state of the art. International Journal
of Forecasting 14: 35-62.
*Corresponding
author; email: pian@um.edu.my