Sains Malaysiana 41(8)(2012): 983-991
Pengoptimuman Proses Pengeringan Semburan Gelatin dengan
Menggunakan Kaedah Sambutan Permukaan
(Optimisation
of the Gelatine Spray Drying Process using Response Surface Methodology)
N. Mohd Suhimi
& A.Wahab Mohammad*
Jabatan
Kejuruteraan Kimia dan Proses, Fakulti Kejuruteraan dan Alam Bina
Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
Received:
8 September 2011 / Accepted: 30 March 2012
ABSTRAK
Proses pengeringan adalah proses akhir dalam penghasilan
gelatin. Kaedah tradisi yang diaplikasi dalam industri adalah
lebih rumit berbanding dengan kaedah pengering sembur. Serbuk gelatin
dapat diperoleh dengan proses pengering sembur, tetapi jarang digunakan kerana
dikhuatiri kualiti gelatin yang terhasil akan terjejas
disebabkan proses degradasi protein. Objektif kajian ini
adalah mendapatkan keadaan optimum penghasilan serbuk gelatin dengan
menggunakan kaedah sambutan permukaan (RSM). Gelatin komersial jenis B (berkekuatan gel dalam julat 151-160)
diperbuat daripada tulang lembu dan pengering sembur skala pandu digunakan
dalam kajian ini. Pemboleh ubah tak bersandar yang
diambil kira ialah kepekatan suapan larutan gelatin (6%(w/w) – 15%(w/w))
dan suhu pengoperasian (150oC-170oC). Pemboleh ubah bersandar yang diambil kira ialah peratus
penghasilan, kandungan lembapan dan kekuatan gel serbuk gelatin. Keputusan uji kaji menunjukkan bahawa perbezaan kepekatan larutan
suapan dan suhu masukan memberi kesan kepada ketiga-tiga sambutan tersebut di
atas dengan faktor kepekatan larutan suapan adalah faktor utama yang memberi
kesan kepada peratus penghasilan serbuk gelatin. Semakin
tinggi kepekatan suapan, semakin berkurang peratus penghasilan. Serbuk
gelatin yang dihasilkan mempunyai kekuatan Bloom di antara 149 – 173 dan ia tidak jauh berbeza dengan kekuatan Bloom gelatin
komersial yang digunakan. Keadaan optimum yang diperoleh daripada analisis RSM ialah kepekatan suapan
9.23% (w/w) dan suhu masukan 170oC dengan penghasilan
serbuk gelatin yang diperoleh ialah 22.15% dengan kandungan lembapan 3.81% dan
kekuatan gel 168.5. Sisihan nilai daripada nilai ramalan ialah 0.09% bagi
peratus penghasilan, 3.05% bagi kandungan lembapan dan 0.78% bagi kekuatan gel.
Kata kunci: Gelatin; kaedah sambutan permukaan; pengering
sembur
ABSTRACT
Drying process is a final process in the production of
gelatine. Traditional method applied in the industry is more complicated to
operate compared with spray drying method. Gelatine powder can be obtained by
the spray drying process. However it is rarely used because it might lead to
lower quality of gelatine due to protein degradation. The objective of this
work was to optimize the production of gelatine powder from spray drying using
response surface methodology (RSM). Commercial type B gelatine (bloom
strength 151-160) from cattle bones and pilot-scale spray dryer was used in
this study. Two independent variables were considered namely feed concentration
(6% (w/w) – 15% (w/w)) and inlet temperature (150oC-170oC). The dependent
variables were yield, moisture content and gel strength of gelatine powder. The
results showed that different feed concentration and inlet temperature affect
all three responses where feed concentration was the main factor affecting the
yield of gelatine powder. The higher the feed concentration of gelatine, the
lower the resulting yields. The gelatine powder produced has Bloom strength
between 149 and 173 which was slightly lower than the Bloom strength of commercial
gelatine. The optimum conditions obtained from RSM analysis were feed concentration 9.23%
(w/w) and inlet temperature of 170oC where the yield of gelatine produce was
22.15% with moisture content 3.81% and gel strength 168.5. It was found that
deviation from the predicted value was 0.09% for yield, 3.05% for moisture
content and 0.78% for gel strength.
Keywords: Gelatine;
response surface methodology; spray drying
REFERENCES
Bhandari,
B.R., Patel, K.C. & Chen, X.D. 2008. Spray drying of food materials-
process and product characteristics. Chen, X.D. & Mujumdar, A.S. (ed.). Drying
Technologies in Food Processing, hlm 113-159. United Kingdom: John Wiley
& Sons.
British Standard Institution. 1975. Methods for sampling and testing gelatin (Physical and Chemical
Method). London: BSI.
Bruschi,
M.L., Cardosa, M.L.C., Lucchesi, M.B. & Gremiao, M.P.D. 2003. Gelatin
microparticles containing propolis obtained by spray drying technique:
preparation and characterization. International Journal of Pharmaceutics 264:
45-55.
Chegini,
G.R. & Ghobadian, B. 2005. Effect of spray drying
conditions on physical properties of orange juice powder. Drying
Technology 23: 657-668.
Filkova,
I., Huang, L.X. & Mujumdar, A.S. 2007. Industrial spray
drying system. Dlm. Handbook of Industrial Drying, Mujumdar, A.S. (ed.) Florida: CRC Press.
Gelatine
Manufacturers of Europe Monograph (GME). 2000. Standardised Methods for the
Testing of Edible Gelatine. version 1, July.
Hinterwaldner,
R. 1977. Technology of gelatin manufacture. doWard, A.G. & Courts, A. (ed.) The Science and
Technology of Gelatin, London: Academic Press Inc.
Mark,
H.F. 2003. Encyclopedia of Polymer Science and Technology. 3rd ed. vol.6. New York: John Wiley Interscience.
Othmer,
K. 1979. Encyclopedia of Chemical Technology. 3rd ed. vol.10. hlm 499-508. New
York: John Wiley & Sons.
Razali, N., Mootabadi, H., Salamatinia, B., Lee, K.T. &
Abdullah, A.Z. 2010. Optimization of process parameters for
alkaline-catalysed transesterification of palm oil using response surface
methodology, Sains Malaysiana 39(5): 805-809
Schrieber,
R. & Gareis, H. 2007. Gelatine Handbook: Theory and Industrial Practice.
Weinheim: WILEY-VCH Verlag GmbH & Co. KgaA.
Tonon,
R.V., Barbet, C. & Hubingr, N.D. 2008. Influence of process conditions on
the physicochemical properties of acai (Euterpe oleraceae Mert.) powder
produced by spray drying. Journal of Food Engineering 88: 411-418.
Walton,
D.E. 2000. The morphology of spray-dried particles a
qualitative view. Drying Technology 18(9): 1943-1986.
Wang,
Y.X. & Lu, Z.X. 2004. Statistical optimization of media
for extracellular polysaccharide by Pholiota squarrosa (Pers. Ex Fr.)
Quel. AS 5.245 under submerged cultivation. Biochem
Eng. J. 20: 39-47.
Wang,
Y.X. & Lu, Z.X. 2005. Optimization of processing
parameters for the mycelial growth and extracellular polysaccharide production
by Boletus spp. ACCC 50328. Process Biochem. 40:
1043-1051.
Wangtueai, S. & Noomhorm, A. 2009. Processing optimization and characterization of gelatin from lizardfish (Saurida spp.) scales. LWT-Food Science and Technology 42: 825-834.
Wejse,
P.L., Ingvorsen, K. & Mortensen, K.K. 2003. Xylanase production by a novel
halophilic bacterium increased 20-fold by response surface methodology. Enzyme
Microb. Technol. 32: 721-727.
*Corresponding
author; email: wahabm@vlsi.eng.ukm.my
|