Sains
Malaysiana 41(9)(2012): 1099–1107
In
vitro Proliferation of Mononucleated
Suspension and Adherent Cells from Mouse and Human Peripheral Blood System
(Proliferasi In vitro Sel
Ampaian dan Melekat Mononukleus daripada Sistem Darah Periferi
Mencit dan Manusia)
Shahrul Hisham
Zainal Ariffin*, Muhammad Dain Yazid, Ruzanna Ab Kadi & Shabnam Kermani
Pusat
Pengajian Biosains dan Bioteknologi, Fakulti Sains dan Teknologi
Universiti
Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor D.E. Malaysia
Rohaya Megat
Abdul Wahab
Jabatan
Ortodontik, Fakulti Pergigian, Universiti Kebangsaan Malaysia, Jalan Raja Muda
Abdul Aziz
53000 Kuala
Lumpur, Malaysia
Received: 21
December 2011 / Accepted: 21 May 2012
ABSTRACT
Primary cells have a limited
proliferative capacity with a finite number of times as compared with cell line
which can grow indefinitely. Therefore, this study was carried out to identify
the proliferative capacity of primary mononucleated cells from mouse and human.
The mononucleated cells were isolated from mouse and human peripheral blood by
density gradient centrifugation using Ficoll-Paque™ Plus. The two types of
cells i.e. suspension and adherent forms were obtained after culturing the
isolated mononucleated cells for 4 days in the complete medium consists of
Alpha Minimal Essential Medium, 10% newborn calf serum and 2%
penicillin/streptomycin. The cells were then cultured for another 10 days to
observe cell viability using trypan blue exclusion assay (suspension form) and MTT assay
(adherent form). NSO and MC3T3-E1 cell lines were
selected as control cell for suspension and adherent cells, respectively. Our
results showed that the proliferation rate of mouse suspension mononucleated
cells increased from 1.31 ± 0.24 cells/day (day 5) to 2.69 ± 0.42 cells/day
(day 10) whilst, for human suspension cells, the proliferation rate
slightly increased from 0.56 ± 0.20 cells/day (day 5) to 0.76 ± 0.29 cells/day
(day 10). However, the proliferation rate of mouse adherent mononucleated cells
decreased from 0.23 ± 0.02 cells/day (day 5) to 0.17 ± 0.01 cells/day (day
10). Meanwhile, human adherent cells maintained proliferation rate at
approximately 0.67 ± 0.18 cells/day. In conclusion, adherent primary
mononucleated cells from both mouse and human have limited capacity to generate
more cells in vitro as compared with suspension mononucleated cells.
Keywords: Adherent cells; peripheral
blood; proliferation; suspension cells
ABSTRAK
Sel primer mempunyai keupayaan yang
terhad untuk berproliferasi berbanding titisan sel yang berupaya untuk
berproliferasi tanpa had. Oleh itu, kajian ini dilakukan
untuk menentukan keupayaan proliferasi sel primer mononukleus daripada mencit
dan manusia. Sel mononukleus diasingkan daripada darah
periferi mencit dan manusia dengan menggunakan larutan Ficoll-Paque™ Plus
melalui kaedah pengemparan kecerunan ketumpatan. Terdapat dua jenis sel
iaitu ampaian dan melekat yang diperoleh selepas pengkulturan sel mononukleus
diasingkan selama 4 hari di dalam medium lengkap yang mengandungi ‘Alpha
Minimal Essential Medium’, 10% serum anak lembu dan 2% penisilin-streptomisin. Sel ini kemudiannya dikultur selama 10 hari untuk analisis
viabiliti menggunakan pengasaian tripan biru (sel ampaian) dan MTT (sel
melekat). Sel titisan NSO and
MC3T3-E1 masing-masing dipilih sebagai sel kawalan untuk sel ampaian dan
melekat. Hasil kami menunjukkan bahawa kadar proliferasi sel ampaian
mononukleus mencit meningkat daripada 1.31 ± 0.24 sel/hari (hari ke-5) kepada
2.69 ± 0.42 sel/hari (hari ke-10) manakala, kadar proliferasi sel ampaian
manusia meningkat sedikit daripada 0.56 ± 0.20 sel/hari (hari ke-5) kepada 0.76
± 0.29 sel/hari (hari 10). Walau bagaimanapun, kadar proliferasi sel melekat mononukleus mencit menurun daripada 0.23 ± 0.02
sel/hari (hari ke-5) kepada 0.17 ± 0.01 sel/hari (hari ke-10). Manakala, kadar proliferasi sel melekat mononukleus manusia kekal pada
0.67 ± 0.18 sel/hari. Kesimpulannya, sel primer melekat
mononukleus daripada mencit dan manusia mempunyai keupayaan terhad untuk
menghasilkan sel secara in vitro berbanding sel ampaian mononukleus.
Kata
kunci: Darah periferi; proliferasi; sel ampaian; sel melekat
REFERENCES
Ariffin,
S.H.Z., Wan Omar, W.H.H., Ariffin, Z.Z., Safian, M.F., Senafi, S. & Megat
Abdul Wahab, R. 2009. Intrinsic anticarcinogenic effects of Piper
sarmentosum ethanolic extract on a human hepatoma cell line. Cancer Cell
International 9: 6.
Berridge,
M.V., Herst, P.M. & Tan, A.S. 2005. Tetrazolium dyes as tools in cell
biology: new insights into their cellular reduction. Biotechnology Annual
Review 11: 127-152.
Campisi, J.
2003. Cellular senescence and apoptosis: how cellular responses might influence
aging phenotypes. Experimental Gerontology 38(1-2): 5-11.
de Magalhães, J.P. & Toussaint, O. 2004. Telomeres and
telomerase: a modern fountain of youth? Rejuvenation Research 7(2):
126-133.
Demsey, A.
& Grimley, P.M. 1976. Characteristics of a
surface-adherent subline derived from friend erythroleukemia cells in
continuous suspension culture. Cancer Research 36: 384-393.
Freshney,
R.I. 2011. Culture of animal cells: A manual of basic technique. In Cytotoxicity. NY: John Wiley & Sons, Inc.
Golubev, A., Khrustalev, S. & Butov, A. 2003. An in silico investigation into the causes of telomere
length heterogeneity and its implications for the Hayflick limit. Journal
of Theoretical Biology 225(2): 153-170.
Hayflick, L.
& Moorhead, P.S. 1961. The serial cultivation of human
diploid cell strains. Experimental Cell Research 25(3): 585-621.
Iamaroon, A., Tait, B. & Diewert, V. 1996. Cell
proliferation and expression of EGF, TGF-α, and EGF receptor in the
developing primary palate. Journal of Dental Research 75(8): 1534-1539.
Kennedy,
A.L., McBryan, T., Enders, G.H., Johnson, F.B., Zhang, R. & Adams, P.D.
2010. Senescent mouse cells fail to overtly regulate the HIRA histone chaperone and
do not form robust Senescence Associated Heterochromatin Foci. Cell Division 5:16.
Lennon, D.P., Edmison,
J.M. & Caplan, A.I. 2001. Cultivation of rat marrow-derived mesenchymal stem cells in reduced oxygen
tension: effects on in vitro and in vivo osteochondrogenesis. Journal
of Cellular Physiology 187: 345-355.
Marciniak-Czochra, A.,
Stiehl, T. & Wagner, W. 2009. Modeling of replicative senescence in hematopoietic development. Aging 1(8):
723.
Morgan, D.O. 2007. The Cell Cycle:
Principal of Control. London: New Science Press Ltd.
Ryu, J.H., Oh, D.J., Choi, C.Y. &
Kim, B.S. 2003. Suspension culture of anchorage-dependent animal cells using
nanospheres of the biodegradable polymer, poly (lactic-co-glycolic acid). Biotechnology
Letters 25(16): 1363-1367.
Soti, C., Sreedhar, A.S. & Csermely,
P. 2003. Apoptosis, necrosis and cellular senescence: chaperone occupancy as a
potential switch. Aging Cell 2(1): 39-45.
Sulic, S., Panic, L., Dikic, I. &
Volarevic, S. 2005. Deregulation of cell growth and malignant transformation. Croatian
Medical Journal 46(4): 622-638.
Tresini, M., Lorenzini,
A., Frisoni, L., Allen, R.G. & Cristofalo, V.J. 2001. Lack of Elk-1 phosphorylation and
dysregulation of the extracellular regulated kinase signaling pathway in senescent human fibroblast. Exp. Cell Res. 269(2): 287-300.
van Zglinicki, T., Saretzki, G., Docke, W.
& Lotze, C. 1995. Mild hyperoxia shortens telomeres and inhibits
proliferation: a model for senescence? Experimental Cell Research 220:
186.
Zhang, W. & Liu, H.
T. 2002. MAPK signal
pathways in the regulation of cell proliferation in mammalian cells. Cell
Research 12(1): 9-18.
Zhang, Z., Tong, J.,
Lu, R., Scutt, A., Goltzman, D. & Miao, D. 2008. Therapeutic potential
of non-adherent BM-derived mesenchymal stem cells in tissue regeneration. Bone Marrow Transplantation 43(1): 69-81.
*Corresponding author; email: hisham@ukm.my
|