Sains Malaysiana 42(12)(2013):
1689–1696
Isoterma
dan Kinetik Penjerapan Boron oleh Batu Kapur Sebagai Penjerap Berkos Rendah
(Isotherm and Kinetic Adsorption of Boron onto Limestone As a
Low-cost Adsorbent)
A.A. HALIM* & MOHD. FIRHAD AHMAD
Pusat Pengajian Sains Sekitaran dan Sumber Alam, Fakulti Sains dan Teknologi
Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
Received: 27 January 2012/Accepted: 18 July 2013
ABSTRAK
Kajian ini
dijalankan untuk
menentukan isoterma dan kinetik penjerapan
bahan pencemar
boron daripada air sisa sintetik menggunakan batu kapur sebagai
bahan penjerap
berkos rendah. Penjerapan boron berlaku secara optimum pada julat pH6-8, masa sentuhan pada
90 min dan dos batu
kapur 240 g/L yang penyingkirannya
mencapai 40%. Isoterma
penjerapan lebih diwakili oleh model Freundlich (R2 =
0.91) berbanding model Langmuir (R2 =
0.78) yang menunjukkan penjerapan
secara multilapisan
adalah dominan. Kajian kinetik penjerapan menunjukkan penjerapan boron ke atas batu kapur
mematuhi dengan
baik model penjerapan pseudo-tertib pertama (R2 =
0.93), pseudo-tertib kedua
(R2 = 0.987), Elovich (R2 =
0.931) dan Intrapartikel
(R2= 0.960). Mekanisme
penjerapan secara
kimia adalah dominan berdasarkan nilaiR2 yang
paling tinggi bagi
model pseudo-tertib kedua.
Kata kunci: Batu kapur; penjerapan; penyingkiran boron
ABSTRACT
This study was performed to determine isotherm and kinetic adsorption
of boron from synthetic wastewater using limestone as a low cost
adsorbent. Boron adsorption was performed at optimum condition
at pH range of 6-8, contact time of 90 min and limestone dosage
of 240 g/L where the boron removal was achieved at 40%. Adsorption
isotherm of boron on limestone was more representative by Freundlich
model (R2 =
0.91) rather than Langmuir model (R2
= 78) indicated that multilayer adsorption was
dominance. The kinetic study indicated that the adsorption of
boron on limestone well obeyed pseudo-first order model (R2 =
0.780), pseudo-second order (R2 =
0.987), Elovich (R2 =
0.931) and Intra-particle model (R2 =
0.960). Chemically adsorption mechanisms were dominant in this
study based on the highest R2 for
pseudo-second order model.
Keywords: Adsorption; boron removal; limestone
REFERENCES
Aksu, Z. & Gonen, F. 2004. Biosorption of phenol by immobilized
activated sludge in a continuous packed bed: Prediction of breakthrough curves. Process Biochemical 39(3): 599-613.
Alias, N.H.M., Halim, A.A.
& Wahab, M.I.A. 2011. Boron removal from aqueous solutions using
composite adsorbent based on carbon-mineral. Sains Malaysiana40(11): 1271- 1276.
APHA. 2005. Standard Methods for Examination
of Water and Wastewater. Edisi ke-21. Washington:
American Public Health Association.
Aziz, H.A. 1997. Heavy metals removal from water
and wastewater using limestone filtration technique: A potential use for small
and medium industries. Journal Institution of Engineers Malaysia (IEM) 3:
27-35.
Benson, W.H., Birge,
W.J. & Dorough, H.W. 1984. Absence
of mutagenic activity of sodium borate (borax) and boric acid in the Salmonella preincubation test. Environmental
Toxicology Chemical 3: 209-214.
Camacho, E.M. & Soto, F.G. 2006. Boron removal by means of adsorption with magnesium oxide. Separation
and Purification Technology 48(1): 36-44.
Cheung, C.W., Porter, J.F.
& McKay, G. 2000. Elovich equation and modified second-order equation for
sorption of cadmium ions onto bone char. Journal of Chemical Technology
& Biotechnology 75: 963-970.
Halim, A.A., Nor Alia Roslan, Nor Shamsiah Yaacub & Mohd. Talib Latif. 2013. Boron removal from aqueous solution using curcumin-impregnated activated carbon. Sains Malaysiana42(9): 1293-1300.
Halim, A.A., Abdul Fattah Abu Bakar, Megat Ahmad Kamal Megat Hanafiah & Haslizaidi Zakaria. 2012a. Boron removal from aqueous solutions using curcumin-aided electrocoagulation. Middle-East
Journal of Scientific Research 11(5): 583-588.
Halim, A.A., Nur Hanani Thaldiri, Normah Awang & Mohd Talib Latif. 2012b. Removing boron from an aqueous solution using turmeric
extract-aided coagulation-flocculation. American Journal of
Environmental Sciences 8(3): 322-327.
Hamidi Abdul Aziz, Mohd Suffian Yusoff, Mohd Nordin Adlan, Nurul Hidayah Adnan &
Salina Alias. 2004. Physico-chemical removal of ion
from semi-aerobic landfill leachatev by limestone
filter. Waste Management 24: 353-358.
Kavak, D. 2009. Removal of boron
from aqueous solutions by batch adsorption on calcined alunite using experimental design. Journal
of Hazardous Materials 163(1): 308-314.
Kavak, D. & Öztürk, N. 2005. Adsorption of boron from aqueous solutions using fly ash: Batch
and column studies. Journal of Hazardous Material 127: 81-88.
Keren, R., Gas, t R.G. & Bar-Yosef, B. 1981. Ph-dependent
boron adsorption by Namontmorillonite. Soil
Science Society of America Journal 45: 45-48.
Litovitz, T.L., Klein-Schwartz, W., Oderda,
G.M. & Schmitz, B.F. 1988. Clinical manifestations of
toxicity in a series of 784 boric acid ingestions. The American
Journal of Emergency Medicine 6: 209-213.
Lu, J.C.S. 1985. Leachate from
Municipal Landfill, Production and Management. Park Ridge: Noyes Pub.
Mance, G., O_Donnell,
A.R. & Smith, P.R. 1988. Proposed environmental quality standards for List II substances
in water: Boron. Medmenham. Water
Research Centre.
Meghea, A., Rehner,
H.H., Peleanu, I. & Mihalache,
R. 1998. Test-fitting on adsorption
isotherms of organic pollutants from waste waters on activated carbon. J. Radioanal. Nucl. Chem. 229:
105-110.
Morales, G.V., Capretto, M.E., Fuentes, L.M. & Quiroga,
O.D. 2000. Dissolution kinetics of hydroborocite in water saturated with carbon dioxide. Hydrometallurgy 58: 127-133.
Nacera, Y. & Bensmaili,
A. 2005. Kinetic models for the sorption of dye from aqueous solution by
clay-wood sawdust mixture. Desalination 185: 499–508.
Rai, D. 1986. Chemical Attenuation Rates, Coefficients, and
Constants in Leachate Migration. Vol. 1: A Critical Review. Report to
Electric Power Research Institute, Palo Alto, CA, by Battelle Pacific Northwest
Laboratories, Richland, WA.
Thomas, J.M. &
Thomas, W.J. 1997. Principle and Practice of Heterogeneous
Catalysis. Weinheim: VCH.
Wang, X., Xia, S., Chen, L., Zhao, J., Chovelon, J. & Nicole, J. 2006. Biosorption of cadmium(I1)
and lead(I1) ions from aqueous solutions onto dried activated sludge. Journal
of Environmental Sciences 18: 840-844.
WHO. 1998. Boron. Geneva, World Health Organization,
International Programme on Chemical Safety
(Environmental Health Criteria monograph).
Yilmaz, Kabay,
N., Brjyak, M., Yuksel, M., Wolska, J. & Koltuniewicz,
A. 2006. A submerged
membrane-ion-exchange hybrid process for boron removal. Desalination 198:
310-315.
*Corresponding
author; email: azharhalim@ukm.my