Sains Malaysiana 42(12)(2013): 1727–1733

 

Analysis of Laser Sintered Materials Using Finite Element Method

(Analisis Terhadap Bahan Kerja Sinteran Laser Menggunakan Teknik Unsur Terhingga)

 

AHMAD SHAHIR BIN JAMALUDIN* & ABDULLAH BIN YASSIN

Department of Mechanical and Manufacturing Engineering, Faculty of Engineering

Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia

 

Received: 19 March 2012/Accepted: 30 May 2012

 

ABSTRACT

Invention of milling combined laser sintering system (MLSS) is able to reduce the mould manufacturing time and improve the mould accuracy. Thus, more study is needed to increase the understanding for the laser sintered material machining characteristic to gain benefit from the invention of MLSS. This paper clarified the analysis of laser sintered material machinability with the application of Finite Element Method (FEM). Mild steel AISI1055 was applied in developing the Finite Element model in this study due to its popularity in machinability test and adequate level of data availability. 2D orthogonal cutting was employed on edge design tools with updated Lagrangian coupled thermo mechanical plane strain model. Adaptive meshing, tool edge radius and various types of friction models were assigned to obtain efficient simulations and precise cutting results. Cutting force and cutting-edge temperature estimated by Finite Element Method are validated against corresponding experimental values by previous researchers. In the study, cutting force increases when radial depth increases and lowest error acquired when the shear friction factor of 0.8 was applied. Machining simulation for laser sintered materials estimated lower cutting force compared with mild steel AISI1055 due to lower Young modulus. Higher cutting temperature estimated for machining simulation laser sintered material compared with machining simulation mild steel AISI1055 due to its low thermal conductivity

.

Keywords: Cutting force prediction; cutting temperature prediction; finite element method (FEM); friction model; 2D orthogonal end milling

 

ABSTRAK

Reka cipta sistem sinteran laser berpemotong (MLSS) mampu mengurangkan tempoh penghasilan acuan dan meningkatkan kejituan acuan. Oleh kerana itu, kajian yang lebih mendalam adalah perlu bagi mengukuhkan pemahaman terhadap ciri pemesinan bahan kerja sinteran laser untuk mendapatkan manfaat daripada reka cipta MLSS. Kertas ini menjelaskan tentang analisis terhadap kebolehmesinan bahan kerja sinteran laser dengan meramalkan daya, suhu pemotongan dan perbandingan bersama kebolehmesinan keluli lembut AISI1055 menggunakan teknik unsur terhingga (FEM). Keluli lembut AISI1055 diguna pakai dalam pembikinan model unsur terhingga kerana kepopularannya dalam ujian kebolehmesinan dan kuantiti data yang diperoleh agak memuaskan. Model simulasi untuk reka bentuk mata alat pemotong dihasilkan menggunakan model pemotong ortogon 2D dengan aplikasi formulasi Lagrangian terhadap model satah terikan termo mekanikal. Siratan beradaptif, radius mata pemotong dan pelbagai jenis model geseren digunakan untuk memperoleh simulasi yang efisien dan keputusan yang tepat. Nilai daya potongan dan suhu mata pemotong yang diramalkan akan dibandingkan dengan nilai uji kaji daripada kajian terdahulu. Dalam kajian ini, daya mata pemotong menunjukkan pertambahan nilai apabila kedalaman radial mata pemotong meningkat dan nilai ralat terendah diperoleh ketika faktor geseren ricih, m 0.8 digunakan. Simulasi pemesinan bahan kerja sinteran laser meramalkan daya potongan yang rendah apabila dibandingkan dengan keluli lembut AISI1055 disebabkan pemalar Young yang lebih rendah. Suhu pemotong untuk pemesinan bahan kerja sinteran laser diramalkan lebih tinggi berbanding keluli lembut AISI1055 kerana kekonduksian haba yang rendah.

 

Kata kunci: Jangkaan daya pemotongan; jangkaan suhu pemotongan; model geseran; pemotong ortogon 2D; teknik unsur terhingga (FEM)

REFERENCES

Abukhshim, N.A., Mativenga, P.T. & Sheikh, M.A. 2005. Investigation of heat partition in high speed turning of high strength alloy steel. Int. Journal of Machine Tools & Manufacture 45: 1687-1695.

Coelho, R.T., Ng, E.G. & Elbestawi, M.A. 2007. Tool wear when turning hardened AISI 4340 with coated PCBN tools using finishing cutting conditions. Int. Journal of Machine Tools and Manufacture 47: 263-272.

Davim, J.P. & Maranhao, C. 2009. A study of plastic strain and plastic strain rate in machining of steel AISI 1045 using FEM analysis. Materials and Design 30: 160-165.

Dewes, R.C. & Aspinwall, D.K. 1997.  A review of ultra high speed milling of hardened steels. Journal of Materials Processing Technology 69: 1-17.

Ergatoudis, I., Irons, B.M. & Zienkiewicz, O.C. 1968. Curved, isoparametric, quadrilateral elements for finite element analysis. International Journal of Solids and Structures 4(1): 31-42.

Filice, L., Micari, F., Rizzuti, S. & Umbrello, D. 2008. Dependence of machining simulation effectiveness on material and friction modeling. Machining Science and Technology 12(3): 370-389.

Furumoto, T., Ueda, T., Abdul Aziz, M.S., Hosokawa, A. & Tanaka, R. 2010. Study on reduction of residual stress induced during rapid tooling process – influence of heating conditions on residual stress. Key Engineering Materials 447: 785-789.

Guzzle, B.U. & Lazuli, I. 2004. An enhanced force model for sculptured surface machining. Machining Science and Technology 8: 431-448.

Hosokawa, A., Zhou, Z.P., Yamada, K. & Ueda, T. 2004. Studies on high-speed milling with small ball end mill: Temperature distribution on flank face of cutting tool. Journal of Japanese Society Precision Engineering 70: 1527-1532.

Kalpakjian, S. & Schmidt, S.R. 2000. Manufacturing Engineering and Technology. 4th ed. New Jersey: Prentice Hall International. p. 1148.

Kato, S., Yamaguchi, K. & Yamada, M. 1972. Stress distribution at the interface between tool and chip in machining. Trans. ASME J. Eng. Ind. 94: 683-689.

King, D. & Tansy, T. 2003. Rapid tooling: Selective laser sintering injection tooling. Journal of Materials Processing Technology 132: 42-48.

Ozel, T. 2006. The influence of friction models on finite element simulations of machining. Int. Journal of Tools and Manufacturing 46: 518-530.

Rolamada, S. & Dickens, P. 2007. Rapid tooling analysis of Stereolithography injection mould tooling. International Journal of Machine Tools and Manufacture 47: 740-747.

Strenkowski, J.S. & Carroll, J.T. 1985. A finite element model of orthogonal metal cutting. Trans. ASME J. Eng. Ind. 107: 349-354.

Usui, E. & Shirakashi, 1982. Mechanics of machining from descriptive to predictive theory. On the Art of Cutting Metals- 75 Years Later 7: 13-55.

Yassin, A. 2009. Experimental study on machinability of laser-sintered material in ball end milling. PhD Thesis. Kanazawa University (unpublished).

Yassin, A., Ueda, T., Furumoto, T., Hosokawa, A., Tanaka, R. & Abe, S. 2009. Experimental investigation on cutting mechanism of laser sintered material using small ball end mill. Journal of Materials Processing Technology 209: 5680-5689.

 

 

*Corresponding author; e-mail: aero_zephyr@yahoo.com

 

 

 

previous