Sains Malaysiana 42(12)(2013):
1727–1733
Analysis
of Laser Sintered Materials Using Finite Element Method
(Analisis Terhadap Bahan Kerja Sinteran Laser Menggunakan Teknik
Unsur Terhingga)
AHMAD SHAHIR BIN JAMALUDIN*
& ABDULLAH
BIN YASSIN
Department of Mechanical and Manufacturing
Engineering, Faculty of Engineering
Universiti Malaysia Sarawak, 94300 Kota
Samarahan, Sarawak, Malaysia
Received: 19 March 2012/Accepted: 30 May 2012
ABSTRACT
Invention of milling combined laser sintering system (MLSS)
is able to reduce the mould manufacturing time and improve the mould accuracy.
Thus, more study is needed to increase the understanding for the laser sintered
material machining characteristic to gain benefit from the invention of MLSS.
This paper clarified the analysis of laser sintered material machinability with
the application of Finite Element Method (FEM). Mild steel AISI1055
was applied in developing the Finite Element model in this study due to its
popularity in machinability test and adequate level of data availability. 2D
orthogonal cutting was employed on edge design tools with updated Lagrangian
coupled thermo mechanical plane strain model. Adaptive meshing, tool edge
radius and various types of friction models were assigned to obtain efficient
simulations and precise cutting results. Cutting force and cutting-edge
temperature estimated by Finite Element Method are validated against
corresponding experimental values by previous researchers. In the study,
cutting force increases when radial depth increases and lowest error acquired
when the shear friction factor of 0.8 was applied. Machining simulation for
laser sintered materials estimated lower cutting force compared with mild steel AISI1055
due to lower Young modulus. Higher cutting temperature estimated for machining
simulation laser sintered material compared with machining simulation mild
steel AISI1055
due to its low thermal conductivity
.
Keywords: Cutting force prediction; cutting temperature
prediction; finite element method (FEM); friction model; 2D orthogonal end
milling
ABSTRAK
Reka cipta sistem sinteran laser berpemotong (MLSS)
mampu mengurangkan tempoh penghasilan acuan dan meningkatkan kejituan acuan. Oleh kerana itu, kajian yang lebih mendalam
adalah perlu bagi mengukuhkan pemahaman terhadap ciri pemesinan bahan kerja
sinteran laser untuk mendapatkan manfaat daripada reka cipta MLSS. Kertas
ini menjelaskan tentang analisis terhadap kebolehmesinan bahan kerja sinteran
laser dengan meramalkan daya, suhu pemotongan dan perbandingan bersama
kebolehmesinan keluli lembut AISI1055 menggunakan teknik unsur terhingga (FEM). Keluli lembut AISI1055 diguna pakai dalam pembikinan model
unsur terhingga kerana kepopularannya dalam ujian kebolehmesinan dan kuantiti
data yang diperoleh agak memuaskan. Model simulasi untuk reka bentuk
mata alat pemotong dihasilkan menggunakan model pemotong ortogon 2D dengan
aplikasi formulasi Lagrangian terhadap model satah terikan termo mekanikal.
Siratan beradaptif, radius mata pemotong dan pelbagai jenis model geseren
digunakan untuk memperoleh simulasi yang efisien dan keputusan yang tepat.
Nilai daya potongan dan suhu mata pemotong yang diramalkan akan dibandingkan dengan nilai uji kaji daripada kajian terdahulu. Dalam kajian ini, daya mata pemotong menunjukkan pertambahan nilai
apabila kedalaman radial mata pemotong meningkat dan nilai ralat terendah
diperoleh ketika faktor geseren ricih, m 0.8 digunakan. Simulasi pemesinan bahan kerja sinteran laser meramalkan daya
potongan yang rendah apabila dibandingkan dengan keluli lembut AISI1055 disebabkan
pemalar Young yang lebih rendah. Suhu pemotong untuk
pemesinan bahan kerja sinteran laser diramalkan lebih tinggi berbanding keluli
lembut AISI1055 kerana
kekonduksian haba yang rendah.
Kata kunci: Jangkaan daya
pemotongan; jangkaan suhu pemotongan; model geseran; pemotong ortogon 2D;
teknik unsur terhingga (FEM)
REFERENCES
Abukhshim, N.A., Mativenga, P.T. & Sheikh,
M.A. 2005. Investigation of heat partition in high speed
turning of high strength alloy steel. Int. Journal of Machine Tools
& Manufacture 45: 1687-1695.
Coelho, R.T., Ng, E.G.
& Elbestawi, M.A. 2007. Tool wear when turning hardened AISI 4340 with coated PCBN tools
using finishing cutting conditions. Int. Journal of Machine Tools and
Manufacture 47: 263-272.
Davim, J.P. & Maranhao, C. 2009. A study of
plastic strain and plastic strain rate in machining of steel AISI 1045 using
FEM analysis. Materials and Design 30: 160-165.
Dewes, R.C. & Aspinwall, D.K. 1997. A
review of ultra high speed milling of hardened steels. Journal of Materials Processing Technology 69: 1-17.
Ergatoudis, I., Irons, B.M. & Zienkiewicz,
O.C. 1968. Curved, isoparametric, quadrilateral elements for finite element
analysis. International Journal of Solids and Structures 4(1): 31-42.
Filice, L., Micari, F.,
Rizzuti, S. & Umbrello, D. 2008. Dependence of machining simulation
effectiveness on material and friction modeling. Machining Science
and Technology 12(3): 370-389.
Furumoto, T., Ueda, T.,
Abdul Aziz, M.S., Hosokawa, A. & Tanaka, R. 2010. Study on reduction of residual stress induced during rapid
tooling process – influence of heating conditions on residual stress. Key
Engineering Materials 447: 785-789.
Guzzle, B.U. & Lazuli, I. 2004. An enhanced force model
for sculptured surface machining. Machining Science and Technology 8: 431-448.
Hosokawa, A., Zhou, Z.P.,
Yamada, K. & Ueda, T. 2004. Studies on high-speed milling with small ball end mill: Temperature
distribution on flank face of cutting tool. Journal of Japanese Society
Precision Engineering 70: 1527-1532.
Kalpakjian, S. & Schmidt, S.R. 2000. Manufacturing
Engineering and Technology. 4th ed. New Jersey:
Prentice Hall International. p. 1148.
Kato, S., Yamaguchi, K.
& Yamada, M. 1972. Stress
distribution at the interface between tool and chip in machining. Trans.
ASME J. Eng. Ind. 94: 683-689.
King, D. & Tansy, T.
2003. Rapid tooling: Selective laser sintering injection tooling. Journal of Materials Processing Technology 132: 42-48.
Ozel, T. 2006. The influence of friction models
on finite element simulations of machining. Int. Journal of Tools and
Manufacturing 46: 518-530.
Rolamada, S. & Dickens, P. 2007. Rapid tooling analysis of Stereolithography
injection mould tooling. International
Journal of Machine Tools and Manufacture 47: 740-747.
Strenkowski, J.S. & Carroll, J.T. 1985. A finite element model of orthogonal metal cutting. Trans.
ASME J. Eng. Ind. 107: 349-354.
Usui, E. & Shirakashi, 1982. Mechanics of machining from descriptive to predictive theory. On the Art of Cutting Metals- 75 Years Later 7: 13-55.
Yassin, A. 2009. Experimental study on machinability of
laser-sintered material in ball end milling. PhD Thesis. Kanazawa University
(unpublished).
Yassin, A., Ueda, T., Furumoto, T., Hosokawa,
A., Tanaka, R. & Abe, S. 2009. Experimental investigation on cutting
mechanism of laser sintered material using small ball end mill. Journal of
Materials Processing Technology 209: 5680-5689.
*Corresponding author; e-mail: aero_zephyr@yahoo.com