Sains Malaysiana 42(12)(2013): 1775–1780
Influence
of Iron on Phase Stability and Corrosion Resistance of Ti-15%Cr Alloy
(Pengaruh Penambahan Besi terhadap Kestabilan Fasa dan Ketahanan Kakisan Aloi Ti-15%Cr)
JUNAIDI SYARIF*, EKO KURNIAWAN, ZAINUDDIN SAJURI
& MOHD ZAIDI OMAR
Department of Mechanical and Materials Engineering, Faculty of
Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor, Malaysia
Received: 23 April 2012/Accepted: 26 June 2012
ABSTRACT
In this study, the effect of Fe addition on the phase stability
and corrosion resistance of Ti-15%Cr alloys was investigated. The alloying
phenomenon in the specimens was also investigated to determine the
effectiveness of the application of pure metallic powders as raw materials for
the powder metallurgy method. Ti-15%Cr-1%Fe alloys exhibited needle-like
structures within equiaxed structures, while
Ti-15%Cr-5%Fe and Ti-15%Cr-10%Fe alloys only showed equiaxed grains. XRD results showed that the β phase could be stabilized by the addition of 5% or more
Fe to the alloy. Although the pure powders were used as raw materials, the
designated chemical composition, i.e. Ti-15%Cr-(1~10)%Fe
can be achieved during sintering. The alloying phenomenon occurred upon sintering
due to the high diffusivity of Cr and Fe within the β Ti matrix.
The corrosion resistance of the newly developed Ti-15%Cr alloys was
significantly improved compared with a commercial Ti-6%Al-4%V alloy.
Keywords: Alloying phenomenon; β phase; corrosion resistance; powder metallurgy;
sintering
ABSTRAK
Dalam kajian ini, kesan penambahan Fe terhadap kestabilan fasa dan rintangan kakisan pada aloi Ti-15%Cr dikaji. Fenomena pengaloian di dalam spesimen juga telah dikaji untuk menjelaskan keberkesanan penggunaan serbuk logam tulen sebagai bahan mentah untuk kaedah metalurgi serbuk. Aloi Ti-15%Cr-1%Fe mempamerkan struktur seperti jarum di dalam struktur sama paksi. Sebaliknya, aloi Ti-15%Cr-5%Fe dan aloi Ti-15%Cr-10%Fe hanya menunjukkan ira sama paksi sahaja. Hasil XRD menunjukkan bahawa fasaβ akan menjadi lebih stabil dengan penambahan Fe lebih besar daripada 5%. Spesimen boleh mencapai komposisi kimia yang ditetapkan iaitu Ti-15% Cr (1 ~
10)% Fe selepas proses pembuatan dilakukan, meskipun kajian ini menggunakan serbuk logam tulen. Fenomena pengaloian berlaku pada masa pensinteran kerana kadar peresapan Cr dan Fe pada matriksβ-Ti adalah tinggi. Aloi Ti-15%Cr-Fe juga dikaji dan hasil kajian menunjukkan bahawa ketahanan kakisan aloi tersebut mengalami peningkatan berbanding dengan ketahanan kakisan aloi Ti-6Al-4V yang merupakan aloi komersial.
Kata kunci: Fasaβ; fenomena pengaloian; ketahanan kakisan; metalurgi serbuk; persinteran
REFERENCES
Abdel-Hady,
M., Hinoshita, K. & Morinaga, M. 2006. General approach to phase stability and elastic
properties of b-type Ti-alloys using electronic parameters. Scripta Mater. 55: 477-480.
Kuroda, D., Niinomi, M., Morinaga, M., Kato, Y. &Yashiro, T. 1998. Design and mechanical properties of new β
type titanium alloys for implant materials. Mater. Sci. Eng. A 243:
244-249.
Lutjering, G. & Williams, J.C. 2007. Titanium. 2nd ed.
Berlin: Springer-Verlag.
Morinaga, M., Kato, M., Kamimura, T., Fukumotom, M.,
Harada, I. & Kubo, K. 1992. Theoretical design of β-type titanium alloys. Proceeding
of 7th International Conference on Titanium. pp. 276-283.
Nag, S., Banerjee, R. & Fraser, H.L. 2005. Microstructural evolution and strengthening mechanisms in Ti-Nb-Zr-Ta, Ti-Mo-Zr-Fe and Ti-15Mo biocompatible alloys. Mater.
Sci. Eng. C. 25: 357-362.
Nakajima, H. & Koiwa,
M. 1991. Diffusion in Titanium. ISIJ Intl. 31: 757-766.
Niinomi, M.
1998. Mechanical properties of biomedical titanium alloys. Mater. Sci. Eng. A 243: 231-236.
Rack, H.J. & Qazi,
J.I. 2006. Titanium alloys for biomedical applications. Mater.
Sci. Eng. C. 26: 1269-1277.
Rohmannudin, T.N., Syarif, J., Omar, M.Z., Sajuri,
Z. & Daud, A.R. 2009. Changes in phase stability
on Ti-10 at. %Mo Alloy by alloying elements. International Journal of
Mechanical and Materials Engineering 4: 70-73.
Sumner, D.R., Turner, T.M., Igloria,
R., Urban, R.M. & Galante, J.O. 1998. Functional adaptation and ingrowth of bone vary as a function of
hip implant stiffness. J. Biomech. 31:
909-917.
Taddei, E.B., Henriques, V.A.R., Silva, C.R.M. & Cairo, C.A.A. 2004. Production of new titanium alloy for orthopedic implants. Mater
Sci. Eng. C. 24: 683-687.
Wapner, K.L.
1991. Implications of metallic corrosion in total knee arthoroplasty. Clin. Orthop. Relat. Res. 271: 12-20.
Wei, Q., Wang, L., Fu, Y., Qin, J., Lu, W. &
Zhang, D. 2011. Influence of oxygen
content on microstructure and mechanical properties of Ti-Nb-Ta-Zr alloy. Mater. Design 32: 2934-2939.
Woodman, J.L., Jacobs, J.J., Galante,
J.O. & Urban, R.M. 1984. Metal ion release from
titanium-based prosthetic segmental replacements of long bones in baboonsa long-term study. J. Orthop.
Res. 1: 421-430.
*Corresponding author; email: syarif@eng.ukm.my