Sains Malaysiana 42(12)(2013): 1775–1780

 

Influence of Iron on Phase Stability and Corrosion Resistance of Ti-15%Cr Alloy

(Pengaruh Penambahan Besi terhadap Kestabilan Fasa dan Ketahanan Kakisan Aloi Ti-15%Cr)

 

JUNAIDI SYARIF*, EKO KURNIAWAN, ZAINUDDIN SAJURI & MOHD ZAIDI OMAR

Department of Mechanical and Materials Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

Received: 23 April 2012/Accepted: 26 June 2012

 

ABSTRACT

In this study, the effect of Fe addition on the phase stability and corrosion resistance of Ti-15%Cr alloys was investigated. The alloying phenomenon in the specimens was also investigated to determine the effectiveness of the application of pure metallic powders as raw materials for the powder metallurgy method. Ti-15%Cr-1%Fe alloys exhibited needle-like structures within equiaxed structures, while Ti-15%Cr-5%Fe and Ti-15%Cr-10%Fe alloys only showed equiaxed grains. XRD results showed that the β phase could be stabilized by the addition of 5% or more Fe to the alloy. Although the pure powders were used as raw materials, the designated chemical composition, i.e. Ti-15%Cr-(1~10)%Fe can be achieved during sintering. The alloying phenomenon occurred upon sintering due to the high diffusivity of Cr and Fe within the β Ti matrix. The corrosion resistance of the newly developed Ti-15%Cr alloys was significantly improved compared with a commercial Ti-6%Al-4%V alloy.

 

Keywords: Alloying phenomenon; β phase; corrosion resistance; powder metallurgy; sintering

 

ABSTRAK

Dalam kajian ini, kesan penambahan Fe terhadap kestabilan fasa dan rintangan kakisan pada aloi Ti-15%Cr dikaji. Fenomena pengaloian di dalam spesimen juga telah dikaji untuk menjelaskan keberkesanan penggunaan serbuk logam tulen sebagai bahan mentah untuk kaedah metalurgi serbuk. Aloi Ti-15%Cr-1%Fe mempamerkan struktur seperti jarum di dalam struktur sama paksi. Sebaliknya, aloi Ti-15%Cr-5%Fe dan aloi Ti-15%Cr-10%Fe hanya menunjukkan ira sama paksi sahaja. Hasil XRD menunjukkan bahawa fasaβ akan menjadi lebih stabil dengan penambahan Fe lebih besar daripada 5%. Spesimen boleh mencapai komposisi kimia yang ditetapkan iaitu Ti-15% Cr (1 ~ 10)% Fe selepas proses pembuatan dilakukan, meskipun kajian ini menggunakan serbuk logam tulen. Fenomena pengaloian berlaku pada masa pensinteran kerana kadar peresapan Cr dan Fe pada matriksβ-Ti adalah tinggi. Aloi Ti-15%Cr-Fe juga dikaji dan hasil kajian menunjukkan bahawa ketahanan kakisan aloi tersebut mengalami peningkatan berbanding dengan ketahanan kakisan aloi Ti-6Al-4V yang merupakan aloi komersial.

 

Kata kunci: Fasaβ; fenomena pengaloian; ketahanan kakisan; metalurgi serbuk; persinteran

REFERENCES

Abdel-Hady, M., Hinoshita, K. & Morinaga, M. 2006. General approach to phase stability and elastic properties of b-type Ti-alloys using electronic parameters. Scripta Mater. 55: 477-480.

Kuroda, D., Niinomi, M., Morinaga, M., Kato, Y. &Yashiro, T. 1998. Design and mechanical properties of new β type titanium alloys for implant materials. Mater. Sci. Eng. A 243: 244-249.

Lutjering, G. & Williams, J.C. 2007. Titanium. 2nd ed. Berlin: Springer-Verlag.

Morinaga, M., Kato, M., Kamimura, T., Fukumotom, M., Harada, I. & Kubo, K. 1992. Theoretical design of β-type titanium alloys. Proceeding of 7th International Conference on Titanium. pp. 276-283.

Nag, S., Banerjee, R. & Fraser, H.L. 2005. Microstructural evolution and strengthening mechanisms in Ti-Nb-Zr-Ta, Ti-Mo-Zr-Fe and Ti-15Mo biocompatible alloys. Mater. Sci. Eng. C. 25: 357-362.

Nakajima, H. & Koiwa, M. 1991. Diffusion in Titanium. ISIJ Intl. 31: 757-766.

Niinomi, M. 1998. Mechanical properties of biomedical titanium alloys. Mater. Sci. Eng. A 243: 231-236.

Rack, H.J. & Qazi, J.I. 2006. Titanium alloys for biomedical applications. Mater. Sci. Eng. C. 26: 1269-1277.

Rohmannudin, T.N., Syarif, J., Omar, M.Z., Sajuri, Z. & Daud, A.R. 2009. Changes in phase stability on Ti-10 at. %Mo Alloy by alloying elements. International Journal of Mechanical and Materials Engineering 4: 70-73.

Sumner, D.R., Turner, T.M., Igloria, R., Urban, R.M. & Galante, J.O. 1998. Functional adaptation and ingrowth of bone vary as a function of hip implant stiffness. J. Biomech. 31: 909-917.

Taddei, E.B., Henriques, V.A.R., Silva, C.R.M. & Cairo, C.A.A. 2004. Production of new titanium alloy for orthopedic implants. Mater Sci. Eng. C. 24: 683-687.

Wapner, K.L. 1991. Implications of metallic corrosion in total knee arthoroplasty. Clin. Orthop. Relat. Res. 271: 12-20.

Wei, Q., Wang, L., Fu, Y., Qin, J., Lu, W. & Zhang, D. 2011. Influence of oxygen content on microstructure and mechanical properties of Ti-Nb-Ta-Zr alloy. Mater. Design 32: 2934-2939.

Woodman, J.L., Jacobs, J.J., Galante, J.O. & Urban, R.M. 1984. Metal ion release from titanium-based prosthetic segmental replacements of long bones in baboonsa long-term study. J. Orthop. Res. 1: 421-430.

 

 

*Corresponding author; email: syarif@eng.ukm.my

 

 

previous