Sains Malaysiana 42(12)(2013):
1799–1803
Casimir
Force Control with Optical Kerr Effect
(Kawalan Daya Casimir dengan Kesan Optik Kerr)
Y.Y. KHOO & C.H. RAYMOND OOI*
Department of Physics, University of
Malaya, 50603 Kuala Lumpur, Malaysia
Received: 19 November 2012/Accepted: 1 April 2013
ABSTRACT
The control of the Casimir force between two parallel plates can
be achieved through inducing the optical Kerr effect of a nonlinear material.
By considering a two-plate system which consists of a dispersive metamaterial
and a nonlinear material, we show that the Casimir force between the plates can
be switched between attractive and repulsive Casimir force by varying the
intensity of a laser pulse. The switching sensitivity increases as the
separation between plate decreases, thus providing new possibilities of
controlling Casimir force for nanoelectromechanical systems.
Keywords: Casimir effect; optical kerr effect (OKE)
ABSTRAK
Kawalan daya Casimir antara dua plat selari boleh dicapai dengan
mencetuskan kesan optik Kerr dalam suatu bahan tak linear. Dengan
mempertimbangkan suatu sistem dua-plat yang terdiri daripada satu plat
metamaterial dengan satu bahan tak linear, kami menunjukkan bahawa daya Casimir
antara plat-plat tersebut boleh ditukar antara daya tarikan Casimir serta daya
tolakan Casimir dengan mengubah keamatan laser. Tahap kesensitifan pertukaran
tersebut meningkat apabila jarak pemisah antara plat-plat tersebut dikurangkan,
justeru mencetus idea baru untuk mengawal kesan Casimir bagi sistem mekanikal
nanoelektrik
Kata kunci: Kesan Casimir; kesan optik Kerr
REFERENCES
Bahk, S.W., Rousseau, P.,
Planchon, T.A., Chvykov, V., Kalintchenko, G., Maksimchuk, A., Mourou, G.A.
& Yanovsky, V. 2004. Generation and characterization of the highest laser intensities
(1022 W/cm2). Opt. Lett. 29: 2837- 2839.
Boyer, T.
1968. Quantum
electromagnetic zero-point energy of a conducting spherical shell and the
Casimir model for a charged particle. Phys. Rev. 174(5):
1764-1776.
Canaguier-Durand, A., Neto,
P.A.M., Lambrecht, A. & Reynaud, S. 2010. Thermal Casimir
effect in the plane-sphere geometry. Phys. Rev. Lett. 104(4):
040403.
Capasso, F., Munday, J.N.,
Iannuzzi, D. & Chan, H.B. 2007. Casimir forces and quantum
electrodynamical torques: Physics and nanomechanics. IEEE. J. Quantum.
Electron.13: 400-403.
Casimir, H. 1948. On the
attraction between two perfectly conducting plates. Proc. K. Ned. Akad. Wet 51:
793-795.
Chan,
H.B., Aksyuk, V.A., Kleiman, R.N., Bishop, D.J. & Capasso, F. 2001. Nonlinear micromechanical
Casimir oscillator. Phys. Rev. Lett. 87(21): 211801.
Chen, R.P. & Raymond,
O.C.H. 2011. Evolution and collapse of a Lorentz beam in Kerr medium. Prog.
Electro. Res. 121: 39-52.
De Los Santos, H. 2003. Nanoelectromechanical quantum circuits and systems. Proc.
IEEE. 91: 1907-1921.
Kenneth,
O., Klich, I., Mann, A. & Revzen, M. 2002. Repulsive Casimir forces. Phys. Rev. Lett. 89(3): 033001.
Kosa,
T.I., Rangel-Rojo, R., Hajto, E., Ewen, P.J.S., Owen, A.E., Kar, A.K. &
Wherrett, B.S. 1993. Nonlinear
optical properties of silver-doped As2S3. J. Non-Cryst. Solids. 164:
1219-1222.
Lambrecht, A. &
Marachevsky, V.N. 2008. Casimir interaction of dielectric
gratings. Phys. Rev. Lett. 101(16): 160403.
Leonhardt, U. &
Philbin, T.G. 2007. Quantum levitation by left-handed
metamaterials. New J. Phys. 9: 254.
Levin,
M., McCauley, A.P., Rodriguez, A.W., Reid, M.T.H. & Johnson, S.G. 2010. Casimir repulsion between
metallic objects in vacuum. Phys. Rev. Lett. 105(9): 090403.
Lezec, H.J., Dionne, J.A.
& Atwater, H.A. 2007. Negative refraction at visible
frequencies. Science 316: 430-432.
Milton, K.A. 2001. The
Casimir Effect: Physical Manifestations of Zero-point Energy. Singapore:
World Scientific. pp. 30-36.
Munday, J.N., Capasso, F.
& Parsegian, V.A. 2009. Measured long-range repulsive
Casimir–Lifshitz forces. Nature 457: 170-173.
Parazzoli,
C.G., Greegor, R.B., Li, K., Koltenbah, B.E.C. & Tanielian, M. 2003. Experimental verification and
simulation of negative index of refraction using Snell’s Law. Phys.
Rev. Lett. 90(10): 107401.
Pendry, J.B., Holden, A.J.,
Robbins, D.J. & Stewart, W.J. 1999. Magnetism from
conductors and enhanced nonlinear phenomena. IEEE Trans. Microwave
Theory Tech. 47: 2075-2084.
Pendry, J.B., Holden, A.J.,
Stewart, W.J. & Youngs, I. 1996. Extremely low frequency
plasmons in metallic mesostructures. Phys. Rev. Lett. 76(25):
4773-4776.
Rahi, S.J., Kardar, M.
& Emig, T. 2010. Constraints on stable
equilibria with fluctuation-induced (Casimir) forces. Phys. Rev. Lett. 105(7):
070404.
Raymond, O.C.H. & Khoo, Y.Y. 2012.
Controlling the repulsive Casimir force with the optical Kerr effect. Phys.
Rev. A86(6): 062509.
Rosa, F.S.S., Dalvit,
D.A.R. & Milonni, P.W. 2008. Casimir- Lifshitz theory and metamaterials. Phys. Rev.
Lett. 100(18): 183602.
Serry, F., Walliser,
D. & Maclay, G. 1998. The role
of the Casimir effect in the static deflection and stiction of membrane strips
in microelectromechanical systems (MEMS). J. Appl. Phys. 84(5): 2501.
Smith, D.R., Padilla, W.J., Vier, D.C.,
Nemat-Nasser, S.C. & Schultz, S. 2000. Composite medium
with simultaneously negative permeability and permittivity. Phys.
Rev. Lett. 84(18): 4184-4187.
Weber, A. & Gies, H. 2010.
Nonmonotonic thermal Casimir force from geometry-temperature interplay. Phys.
Rev. Lett. 105(4): 040403.
Yang, Y., Zeng, R.,
Chen, H., Zhu, S. & Zubairy, M.S. 2010. Controlling the Casimir force via the electromagnetic
properties of materials. Phys. Rev. A 81(2): 022114.
Yang, Y., Zeng, R., Xu, J. & Liu,
S. 2008. Casimir force between left-handed-material slabs. Phys. Rev. A 77(1): 015803.
Yannopapas, V. & Vitanov, N.V.
2009. First-principles study of Casimir repulsion in metamaterials. Phys.
Rev. Lett. 103(12): 120401.
Zhang, S., Park,
Y.S., Li, J., Lu, X., Zhang, W. & Zhang, X. 2009. Negative refractive index in chiral metamaterials. Phys.
Rev. Lett. 102(2): 023901.
*Corresponding
author; email: rooi@um.edu.my