Sains Malaysiana 42(12)(2013):
1805–1810
Cho
Abelian Decomposition of Monopole-Antimonopole Pair Gauge Potentials
(Penghuraian Abelan Cho kepada Keupayaan Tolok Pasangan
Monokutub-Antimonokutub)
KHAI-MING WONG*, PEI-YEN TAN & ROSY THE
School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
Received: 19 November 2012/Accepted: 1 April 2013
ABSTRACT
Recently we have reported on standard MAP and generalized
Jacobi Elliptic monopole-antimonopole pair (MAP) solutions of the SU(2)
Yang-Mills-Higgs model. Here we apply Cho Abelian decomposition to the gauge
potential of these MAP solutions. It is shown that the point
singularities at the locations of the monopole (antimonopole),
that comes from the restricted part, are removed by the unrestricted
valence potential. We also consider the effect of decomposition upon energy and
magnetic charge density for the cases of standard MAP and generalized
Jacobi elliptic MAP solutions, under the conditions of
vanishing (λ = 0) and non vanishing (λ = 1) Higgs potential.
Keywords: Cho Abelian decomposition; monopole; Yang-Mills-Higgs
ABSTRAK
Sebelum ini, kami telah melaporkan penyelesaian MAP-piawai dan pasangan
monokutub-antimonokutub (MAP) Jacobi Eliptik umum kepada model SU(2)
Yang-Mills-Higgs. Di sini kami menggunakan kaedah penghuraian
Abelian Cho ke atas keupayaan tolok penyelesaian tersebut. Kami
menunjukkan titik tak-terhingga di lokasi monokutub (antimonokutub) yang
berasal daripada bahagian terhad boleh dipadamkan oleh keupayaan valens. Kami juga mengambil kira kesan penghuraian ke atas
tenaga dan ketumpatan cas magnet bagi kes MAP-piawai dan
penyelesaian MAP Jacobi eliptik, dalam keadaan keupayaan Higgs lenyap (λ = 0)
dan tidak lenyap (λ = 1).
Kata kunci: Monokutub; penghuraian Abelian Cho;
Yang-Mills-Higgs
REFERENCES
Arafune, J., Freund, P.G.O. & Goebel, C.J.
1975. Topology of Higgs fields. J. Math. Phys. 16:
433-437.
Bogomol 'nyi, E.B. 1976. The
stability of classical solutions. Sov. J. Nucl.
Phys. 24: 449-454.
Cho, Y.M. 1980. Restricted gauge theory. Phys.
Rev. D 21: 1080-1088.
Cho, Y.M. 1981. Extended gauge theory and its
mass spectrum. Phys. Rev. D 23: 2415-2426.
Cho, Y.M., Lee, H.W. &
Pak, D.G. 2002. Faddeev-Niemi
conjecture and effective action of QCD. Phys. Lett. B 525: 347-354.
Cho, Y.M. & Pak, D.G. 2002. Monopole
condensation in SU(2) QCD. Phys. Rev. D 65:
074027.
Cho, Y.M., Kim, S.W. & Kim, J.H. 2008. Abelian
decomposition of Einstein’s theory:Reformulation of
general relativity. hep-th/0702200.
Faddeev, L. & Niemi, A.
1999a. Partially dual variables
in SU(2) Yang-Mills theory. Phys. Rev. Lett. 82:
1624-1627.
Faddeev, L. & Niemi, A.
1999b. Partial duality in SU(N) Yang- Mills theory’. Phys. Lett. B 449:
214-218.
Forgács, P., Horvárth, Z.
& Palla, L. 1981a. Exact
multimonopole solutions in the Bogomol’nyi-Prasad-Sommerfield limit. Phys.
Lett. B 99: 232-236.
Forgács, P., Horvárth, Z.
& Palla, L. 1981b. Non-linear superposition of monopoles. Nucl. Phys. B 192:
141-158.
Kleihaus, B. & Kunz, J. 2000. Monopole-antimonopole solution
of the SU(2) Yang-Mills-Higgs model. Phys. Rev. D 61:
025003.
Manton, N.S. 1977. The force between 't Hooft-Polyakov monopoles.
Nucl. Phys. (N.Y.) B 126: 525-541.
Ng, B.L., Teh, R. & Wong, K.M. 2012. The Numerical Procedures: One-Half Monopole
Solutions. National Conference on Physics, PERFIK 2012, Colmar Tropicale,
Bukit Tinggi, Pahang, November 19-21.
Polyakov, A.M. 1974. Particle spectrum in
quantum field theory. JETP Lett. 20: 194-195.
Prasad, M.K. 1981. Exact Yang-Mills-Higgs monopole solutions of
abritary charge. Commun. Math. Phys. 80: 137-149.
Prasad, M.K. & Sommerfield, C.M. 1975. Construction
of exact multimonopole solutions. Phys. Rev. Lett. 35: 760-762.
Prasad, M.K. & Rossi, P. 1981. Construction
of exact multimonopole solutions. Phys. Rev. D 24: 2182-2199.
Rebbi, C. & Rossi, P. 1980. Multimonopole solutions in the Prasad-Sommerfield
limit. Phys. Rev. D 22: 2010-2017.
't Hooft, G. 1974. Magnetic monopoles in
unified gauge theories. Nucl. Phys. B 79: 276-284.
Teh, R. & Wong, K.M. 2005a. Monopole-antimonopole and vortex rings. J. Math. Phys. 46:
082301.
Teh, R. & Wong, K.M. 2005b. Static monopoles and their anticonfigurations. Int. J. Mod. Phys. A 20: 4291-4308.
Teh, R., Ng, B.L. & Wong, K.M. 2012. Finite Energy One-half Monopole Solutions of the SU(2) Yang-Mills-Higgs Theory’. International Conference
on High Energy Physics, ICHEP 2012, Melbourne, Australia, July 4-11.
Teh, R., Tan, P.Y. & Wong, K.M. 2012. Jacobi elliptic monopole- antimonopole pair solutions. Int. J. Mod. Phys. A 27(26): 1250148.
Teh, R., Wong, K.M. & Lim, K.G. 2010. Generalized Jacobi elliptic one-monopole-Type A. Int. J. Mod.
Phys A 25(31): 5731-5746.
Ward, R.S. 1981. A Yang-Mills-Higgs monopole of
charge 2. Commun. Math. Phys. 79: 317-325.
Weinberg, E.J. & Guth, A.H. 1976. Nonexistence of spherically
symmetric monopoles with multiple magnetic charge.
Phys. Rev. D 14: 1660-1662.
*Corresponding author; email: kmwong@usm.my