Sains Malaysiana 42(1)(2013):
99–105
Lactate Dehydrogenase Activity During Tooth Movement under
1.0 N
and 1.5 N Continuous Force
Applications
(Aktiviti Laktat Dehidrogenase Semasa Pergerakan Gigi dengan
Aplikasi
Tekanan 1.0 N dan 1.5 N Secara Berterusan)
Shahrul Hisham Zainal Ariffin & Nurfathiha Abu Kasim
School of Bioscience and Biotechnology, Faculty of Science
and Technology
Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor D.E. Malaysia
Rohaya Megat Abdul Wahab*
Department of Orthodontics, Faculty of Dentistry, Universiti
Kebangsaan Malaysia
50300 Kuala Lumpur, Malaysia
Abdul Aziz Jemain
DELTA, School of Mathematics, Faculty of Science and
Technology
Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor D.E.Malaysia
Received: 19 December 2011 / Accepted: 10 July 2012
ABSTRACT
The aim of this study was to observe the pattern of lactate
dehydrogenase (LDH) activity in GCF and the rate of tooth
movement at two different orthodontic forces (1.0 N and 1.5 N). Twelve subjects
participated in this study and was chosen based on the inclusion criteria. Each
subject received forces of 1.0 N and 1.5 N for tooth movement either on the
left or right side of the maxillary canine. GCF sample was collected
at mesial and distal sites of the canines before applying the appliance (week
0) and every week for 5 weeks after tooth movement (week 1 to week 5) where
baseline activity served as control. LDH activity was assayed spectrophotometically
at 340 nm. The tooth movements were measured from casted study models. LDH specific
activity at mesial sites in 1.0 N and 1.5 N force groups, respectively
increased significantly (p<0.05)
only on week four and throughout the treatment when compared with baseline. At
distal sites, LDH specific activity with 1.5 N was higher than 1.0 N throughout the
five weeks of tooth movement. LDH specific activity with 1.5 N force
increased at both mesial (week 2) and distal sites (week 3) with significant
different (p<0.05) when compared with 1.0 N force. Tooth movement
with 1.5 N showed significantly faster (p<0.05) at the end of week 5
when compared with 1.0 N. LDH has the potential as a biological marker
of inflammation during tooth movement.A force of 1 N was more suitable to be
used although less tooth movement was produced because less inflammation caused
by the force can be useful in orthodontic treatment for patients with
stabilised periodontal diseases compared with 1.5 N force.
Keywords: Biological marker; inflammation; lactate dehydrogenase;
orthodontic force; tooth movement
ABSTRAK
Kajian ini bertujuan untuk melihat corak aktiviti laktat
dehidrogenase (LDH) di dalam GCF dan kadar pergerakan gigi pada dua daya tekanan ortodontik yang
berbeza (1.0 N dan 1.5 N). Dua belas orang subjek telah
mengambil bahagian dalam kajian ini dan mereka dipilih berdasarkan beberapa
kriteria yang telah ditetapkan. Setiap subjek menerima 1.0 N dan 1.5 N
daya tekanan untuk pergerakan gigi sama ada pada
bahagian kanan atau kiri gigi taring maksila. Sampel GCF dikumpul dari
bahagian mesial dan distal gigi taring sebelum dipakaikan pendakap gigi (minggu
0) dan setiap minggu untuk lima minggu selepas gigi
digerakkan (minggu 1 hingga minggu 5) dengan aktiviti basal dijadikan sebagai
kawalan. Aktiviti LDH diasai menggunakan pendekatan spektrofotometri
pada 340 nm. Pergerakan gigi diukur daripada model-model kajian yang
telah dibentuk. Aktiviti spesifik LDH pada bahagian mesial dalam kumpulan
tekanan 1.0 N dan 1.5 N masing-masing meningkat secara signifikan (p<0.05) hanya pada minggu 4 dan sepanjang
rawatan berbanding kawalan. Pada bahagian distal, aktiviti spesifik LDH dengan
1.5 N adalah lebih tinggi berbanding 1.0 N sepanjang lima minggu pergerakan gigi. Aktiviti spesifik LDH dengan tekanan 1.5 N
meningkat (p<0.05) pada kedua-dua bahagian mesial (minggu 2) dan
distal (minggu 3) berbanding tekanan 1.0 N. Pergerakan gigi dengan 1.5 N lebih
pantas (p<0.05) pada akhir minggu 5 berbanding dengan 1.0 N. LDH berpotensi
sebagai penanda biologi untuk inflamasi semasa pergerakan gigi. Daya tekanan 1.0
N berbanding 1.5 N lebih sesuai digunakan walaupun ia menghasilkan kurang pergerakan gigi kerana penghasilan inflamasi yang rendah
adalah penting dalam rawatan ortodontik kepada pesakit periodontal yang telah
stabil.
Kata kunci: Inflamasi; laktat dehidrogenase;
penanda biologi; pergerakan gigi; tekanan ortodontik
REFERENCES
Apajalahti, S., Sorsa, T.,
Railavo, S. & Ingman, T. 2003. The in vivo levels of matrix
metalloproteinase -1 and -8 in gingival crevicular fluid during initial
orthodontic tooth movement. J. Dent. Res. 82: 1018-1022.
Asma, A.A.A., Rohaya, M.A.W. & Shahrul
Hisham, Z.A. 2011. Pattern of crevicular alkaline phosphatase during
orthodontic tooth movement: Leveling & alignment stage. Sains Malaysiana 40(10): 1147-1151.
Drent, M., Cobben, N.A.M.,
Henderson, R.F., Wouters, E.F.M. & van Dieijen-Visser, M. 1996. Usefulness of lactate
dehydrogenase and its isoenzymes as indicators of lung damage or inflammation. Eur. Resp. J. 9: 1736-1742.
Jin, L. 2007. Periodontic-orthodontic
interactions-rationale, sequence and clinical implications. Hong Kong
Dent. J. 4: 60-64.
Kavadia-Tsatala, S.,
Kaklamanos, E.G. & Tsalikis, L. 2002. Effects
of orthodontic treatment on gingival crevicular fluid flow rate and
composition: Clinical implications and applications. Int.
J. Adult Orthod. Orthognath. Surg. 17: 191-205.
King, G.J., Keeling, S.D. & Wronski, T.J. 1991. Histomorphometric study
of alveolar bone turnover in orthodontic tooth movement. Bone 12:
401-9.
Krishnan, V. & Davidovitch, Z.
2006. Cellular, molecular
and tissue-level reactions to orthodontic force. Am. J. Orthod.
Dentofacial Orthop. 129(469): e1-32.
Lamster, I.B. & Ahlo, J.K. 2007. Analysis of gingival crevicular fluid as applied to the
diagnosis of oral and systemic diseases. Ann. N. Y. Acad. Sci. 1098:
216-229.
Perinetti, G., Baccetti, T., Contardo,
L. & Di Lenarda, R. 2011. Gingival crevicular fluid alkaline phosphatase activity as a
non-invasive biomarker of skeletal maturation. Orthod. Craniofac. Res.
14: 44-50.
Perinetti, G., Paolantonio, M., D’Attilio, M., D’Archivio,
D., Dolci, M., Femminella, Beatrice., Festa, F. &
Spoto, G. 2003. Aspartate aminotransferase activity in
gingival crevicular fluid during human orthodontic tooth movement. A controlled short-term longitudinal study. J. Periodontol. 74: 145-152.
Perinetti, G., Paolantonio, M.,
D’Attilio, M., D’Archivio, D., Tripodi, D., Femminella, B., Festa, F. &
Spoto, G. 2002. Alkaline phosphatase
activity in gingival crevicular fluid during human orthodontic tooth movement. Am. J. Orthod. Dentofacial. Orthop. 122: 548-556.
Perinetti, G., Serra, E., Paolantonio, M., Bruè, C., Di Meo,
S., Filippi, M.R., Festa, F. & Spoto, G. 2005. Lactate dehydrogenase
activity in human gingival crevicular fluid during orthodontic treatment: A
controlled, short-term longitudinal study. J. Periodontol. 76: 411-417.
Py, O-M., Kurol, J. & Lundgren,
D. 1996. The effects of a four-fold increased orthodontic
force magnitude on tooth movement and root resorptions. An intra-individual study in adolescents. Eur. J. Orthod. 18: 287-294.
Ren, Y., Jaap, C.M. & Kuijpers-Jagtman, A.M. 2003.
Optimum force magnitude for orthodontic tooth movement: A systematic literature
review. Angle Orthod. 73: 86-92.
Roberts-Harry, D. & Sandy, J. 2004. Orthodontics. Part
11: Orthodontic tooth movement. Bri. Dent. J. 196: 391-394.
Rohaya, M.A.W., Maryati, M.D., Sahidan, S., Asma Alhusna,
A.A., Abdul Aziz, J., Nurfathiha, A.K., Zulham, Y. & Shahrul Hisham, Z.A.
2011. Crevicular tartrate resistant acid phosphatase activity
and rate of tooth movement under different continuous force applications. Afr. J. Pharm. Pharmacol. 5(20): 2213-2219.
Rohaya, M.A.W., Shahrul Hisham, Z.A., Khazlina, K. 2008. The activity of aspartate aminotransferase during canine retraction
(bodily tooth movement) in orthodontic treatment. J. Med. Sci. 8(6):
553-558.
Rygh, P. 1972. Ultrastructural changes in pressure zones of
rat molar periodontium incident to orthodontic movement. Acta Odontol.
Scand. 30: 575-593.
Rygh, P. 1976. Ultrastructural changes in tension zones of
rat molar periodontium incident to orthodontic movement. Am. J. Orthod.
70: 269-281.
Sarah, A.A. & Sukumaran, A. 2011. Lactate
dehydrogenase activity in gingival crevicular fluid as a marker in orthodontic
tooth movement. Open Dent. J. 5: 105-109.
Serra, E., Perinetti, G., D’Attilio,
M., Cordella, C., Paolantonio, M. & Spoto, G. 2003. Lactate dehydrogenase activity in
gingival crevicular fluid during orthodontic treatment. Am. J.
Orthod. Dentofacial Orthop. 124: 206-211.
Shahrul Hisham, Z.A., Mohd Faiz, E., Rohaya, M.A.W., Yosni,
B. & Sahidan, S. 2010. Profile of lactate dehydrogenase,
tartrate resistant acid phosphatase and alkaline phosphatase in saliva during
orthodontic tooth movement. Sains Malaysiana 39(3): 405-412.
Toms, S.R., Lemons, J.E., Bartolucci,
A.A. & Eberhardt, A.W. 2002. Nonlinear stress-strain behavior of periodontal ligament under
orthodontic loading. Am. J. Orthod. Dentofacial Orthop. 122: 174-179.
Víctor Alonso De La Peña, Pedro Diz
Dios & Rafael Tojo Sierra. 2007.
Relationship between lactate dehydrogenase activity in saliva and oral health
status. Arch. Oral. Biol. 52(10): 911-915.
Wise, G.E. & King, G.J. 2008. Mechanisms
of tooth eruption and orthodontic tooth movement. J. Dent. Res.
7(5): 414-434.
*Corresponding
author; email: shahroy7@gmail.com
|