Sains Malaysiana 42(2)(2013): 167–173

 

Preparation, Characterization and Properties of Core-Shell Cobalt Ferrite/Polycaprolactone Nanomagnetic Biomaterials

(Penyediaan, Pencirian dan Sifat-sifat Rangka-Teras Nanomagnetik Biobahan Kobalt Ferit/Polikaprolakton)

 

Khoo Kok Siong*, Nur Farhana Amari, Tan Chun Yuan, Shahidan Radiman,

Redzuwan Yahaya & Muhamad Samudi Yasir

School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 8 March 2012 / Accepted: 23 June 2012

 

ABSTRACT

 

Combination of magnetic and biocompatible materials to form core-shell nanomaterials has been widely used in medical fields. These core-shell magnetic biomaterials have a great potential for magnetic fluid hyperthermia (MFH) treatment to remedy cancer. The aims of this study were to investigate the production of core-shell cobalt ferrite/polycaprolactone (CoFe2O4/PCL) nanomaterials with different ratios of cobalt ferrite to caprolactone, to study the effects of using polymer in reducing the agglomerations between particles and to determine the structure, morphology, thermal and magnetic properties of these core-shell nanomaterials. The core-shell nanomaterials were produced by in situ polymerization method. The formation of the CoFe2O4/PCL was investigated by means of Fourier transform infrared spectroscopy (FTIR), x-ray diffractometer (XRD) and transmission electron microscopy (TEM). Its thermal properties were determined by using thermogravimetric analyzer (TGA). The vibrating sample magnetometer (VSM) was used to reveal the magnetic properties. The results for the XRD and FTIR spectra demonstrated the formation of cobalt ferrite and polycaprolactone in core-shell nanomaterials. From the TEM results, it was seen that the core-shell CoFe2O4/PCL nanomaterials were best formed at a ratio of CoFe2O4 to monomer caprolactone mixtures of 1:4.

 

Keywords: Cobalt ferrite; core-shell nanomaterials; polycaprolactone; TEM image

 

ABSTRAK

Gabungan penggunaan bahan bersifat magnetik dan bioserasi bagi menghasilkan rangka-teras nanobahan telah digunakan secara meluas dalam bidang perubatan. Rangka teras biobahan magnet ini mempunyai potensi yang besar sebagai hipertemia cecair magnetik (MFH) bagi merawat barah. Tujuan kajian ini adalah untuk mengkaji penghasilan rangka-teras nanobahan CoFe2O4/PCL dalam kadar nisbah kobalt ferit dan kaprolakton yang berbeza, mengenal pasti kesan penggunaan polimer bagi mengurangkan penggumpalan zarah-zarah kobalt ferit dan melakukan pencirian struktur, morfologi, haba dan magnetik terhadap nanobahan ini. Rangka-teras nanobahan ini dihasilkan melalui proses pempolimeranin situ. Pembentukannya ditentukan menggunakan teknik pembelauan sinar-x (XRD), spektrometri transformasi Fourier inframerah (FTIR) dan mikroskop transmisi elektron (TEM). Sifat haba nanobahan ini dicirikan menggunakan penganalisis termogravimetri (TGA). Magnetometer sampel bergetar (VSM) pula digunakan bagi mengetahui sifat magnet bahan. Hasil daripada XRD dan spektrum FTIR menunjukkan kehadiran kobalt ferit dan polikaprolakton dalam sampel rangka-teras nanobahan. Morfologi daripada imej TEM menunjukkan rangka-teras nanobahan hanya terbentuk pada nisbah campuran 1:4 kobalt ferit ke kaprolakton.

 

Kata kunci: Imej TEM; kobalt ferit; nanobahan rangka-teras; polikaprolakton

 

 

REFERENCES

 

Ahmet, N.A., Deniz, K. & Birgul, Z.K. 2011. Magnetic nanocomposites with drug-intercalated layered double hydroxide shell supported on commercial magnetite and laboratory-made magnesium ferrite core materials. Materials Science and Engineering C 31(5): 851-857.

Alexiou, C., Jurgons, R., Schmid, R., Hilpert, A., Bergemann, C., Parak, F. & Iro, H. 2005. In vitro and in vivo investigations of targeted chemotherapy with magnetic nanoparticles. Journal of Magnetism and Magnetic Materials 293: 389-393.

Amari, N.F., Khoo, K.S., Radiman, S., Yasir, M.S. & Yahaya, R. 2011. Pencirian struktur spektrum, morfologi, haba dan optikal rangka teras nanobahan kobalt ferrit/polikaprolakton (CoFe2O4/PCL). Prosiding Kolokium Siswazah ke-11, pp. 107-109.

Baldi, G., Bonacchi, D., Innocenti, D.C., Lorenzi, G. & Sangregorio, C. 2007. Cobalt ferrite nanoparticles: The control of the particle size and surface state and their effects on magnetic properties Journal of Magnetism and Magnetic Materials 311(1): 10-16.

Chuang, F-Y. & Yang, S-M. 2008. Cerium dioxide/polyaniline core shell nanocomposite. Journal of Colloid and Interface Science 320: 194-201.

Cristescu, R., Doraiswamy, A., Socol, G., Grigorescu, S., Axente, E., Mihaiescu, D., Moldovan, A., Narayan, R.J., Stamatin, I., Mihailescu, I.N., Chisholm, B.J. & Chrisey, D.B. 2007. Polycaprolactone biopolymer thin films obtained by matrix assisted pulsed laser evaporation. Applied Surface Science 253(15): 6476-6479.

Gandhi, N., Singh, K., Ohlan, A., Singh, D.P. & Dhawan, S.K. 2011. Thermal, dielectric and microwave absorption properties of polyaniline–CoFe2O4 Nanocomposites. Composites Science and Technology 71: 1754-176.

Hartono, D., Qin, J.W., Yang, J.K.L. & Yung, L.Y.L. 2009. Imaging the disruption of phospholipid monolayer by protein-coated nanoparticles using ordering transitions of liquid crystals. Biomaterials 30(5): 843-849.

Jiang, J. & Ai, L. 2010. Influence of annealing temperature on the formation, microstructure and magnetic properties of spinel nanocrystalline cobalt ferrites. Current Applied Physics 10(1): 284-288.

Jing, J., Lun, H.A. & Ai, H.L. 2010. Anovel poly(o-anisidine)/CoFe2O4 multifunctional nanocomposite: Preparation, characterization and properties. Synthetic Metals 160(5): 333-336.

Kakarla, R.R., Lee, K-P., Anantha, I.G. & Kang, H-D. 2007. Organosilane modified magnetite nanoparticles/poly(aniline-co-o/m-aminobenzenesulfionic acid) composites: Synthesis and characterization. Reactive and Functional Polymers 67(10): 943-954.

Kang, B., Chang, S., Dai, Y. & Chen, D. 2007. Radiation synthesis and magnetic properties of novel Co0.7Fe0.3/Chitosan compound nanoparticles for targeted drug carrier. Radiation Physics and Chemistry 76(6): 968-973.

Kumar, C.S.R. & Mohammad, F. 2011. Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Advanced Drug Delivery Reviews 63(9): 789-808.

Liu, H., Xu, F., Li, L., Wang, Y. & Qiu, H. 2009. A novel CoFe2O4/polyacrylate nanocomposite prepared via an in situ polymerization in emulsion system. Reactive and Functional Polymer 69(1): 43-47.

Nicholson, J.W. 1991. The Chemistry of Polymers. Cambridge.

Pradeep, A., Priyadharsini, P. & Chandrasekaran, G. 2008. Sol-gel route of synthesis of nanoparticles of MgFe2O4 and XRD, FTIR and VSM study, Journal of Magnetism and Magnetic Materials 320(21): 2774-2779.

Pita, M., Abad, J.M., Dominguez, C.V., Briones, C., Marti, E.M., Gago, J.A.M., Morales, M.P. & Fernandez, V.M. 2008. Synthesis of cobalt ferrite core/metallic shell nanoparticles for the development of a specific PNA/DNA biosensor. Journal of Colloid and Interface Science 321(2): 484-492.

Qin, R., Li, F., Jiang, W. & Chen, M. 2010. Synthesis and characterization of diethylenetriaminepentaacetic acid-chitosan-coated cobalt ferrite core/shell nanostructures. Materials Chemistry and Physics 122(2): 498-501.

Saikia, D. & Kumar, A. 2004. Ionic conduction in P(VDF-HFP)/PVDF–(PC + DEC)–LiClO4 polymer gel electrolyte. Electrochimica Acta49(16): 2581-2589.

Sanjeev, K., Vaishali, S., Saroj, A., Uttam, K.M. & Ravinder, K.K. 2010. Bimodal Co0.5Zn0.5Fe2O4/PANInanocomposites: Synthesis, formation mechanism and magnetic properties. Composites Science and Technology 70(2): 249-254.

Sun, C., Lee, J.S.H. & Zhang, M. 2008. Magnetic nanoparticles in MR imaging and drug delivery. Advanced Drug Delivery Reviews 60(11): 1252-1265.

Tadros, T.F. 2009. Emulsion Science and Technology. Weinheim: Wiley-VCH.

Xu, T., Zhang, N., Nichols, H.L., Shi, D. & Wen, X. 2007. Modification of nanostructured materials for biomedical applications. Materials Science and Engineering C 27(3): 579-594.

Yu, M.H., Devi, P.S., Lewis, L.H., Oouma, P., Parise, J.B. & Gambino, R.J. 2003. Towards a magnetic core-shell nanostructure: Anovel composite made by a citrate-nitrate auto-ignition process. Materials Science and Engineering B 103(3): 262-270.

Zhang, Z., He, Q., Xiong, J., Xiong, Y. & Xiao, H. 2008. A novel biomaterial - Fe3O4:TiO2 core-shell nano particle with magnetic performance and high visible light photocatalytic activity. Optical Materials 31: 380-384.

 

*Corresponding author; email: khoo@ukm.my

 

 

previous