Sains Malaysiana 42(2)(2013):
167–173
Preparation,
Characterization and Properties of Core-Shell Cobalt Ferrite/Polycaprolactone Nanomagnetic Biomaterials
(Penyediaan, Pencirian dan Sifat-sifat Rangka-Teras Nanomagnetik Biobahan Kobalt Ferit/Polikaprolakton)
Khoo Kok Siong*, Nur Farhana Amari, Tan Chun Yuan, Shahidan Radiman,
Redzuwan Yahaya & Muhamad Samudi Yasir
School of Applied Physics, Faculty of Science
and Technology, Universiti Kebangsaan Malaysia, 43600
Bangi, Selangor Darul Ehsan, Malaysia
Received: 8 March 2012 / Accepted: 23 June 2012
ABSTRACT
Combination of magnetic and biocompatible materials to form
core-shell nanomaterials has been widely used in
medical fields. These core-shell magnetic biomaterials have a great potential for
magnetic fluid hyperthermia (MFH) treatment to remedy
cancer. The aims of this study were to investigate the production of core-shell
cobalt ferrite/polycaprolactone (CoFe2O4/PCL) nanomaterials with different ratios of cobalt ferrite
to caprolactone, to study the effects of using
polymer in reducing the agglomerations between particles and to determine the
structure, morphology, thermal and magnetic properties of these core-shell nanomaterials. The core-shell nanomaterials were produced by in
situ polymerization method. The formation of the CoFe2O4/PCL was
investigated by means of Fourier transform infrared spectroscopy (FTIR),
x-ray diffractometer (XRD)
and transmission electron microscopy (TEM). Its thermal properties
were determined by using thermogravimetric analyzer (TGA).
The vibrating sample magnetometer (VSM) was used to reveal the
magnetic properties. The results for the XRD and FTIR spectra
demonstrated the formation of cobalt ferrite and polycaprolactone in core-shell nanomaterials. From the TEM results,
it was seen that the core-shell CoFe2O4/PCL nanomaterials were best formed at a ratio of CoFe2O4 to
monomer caprolactone mixtures of 1:4.
Keywords: Cobalt ferrite; core-shell nanomaterials; polycaprolactone; TEM image
ABSTRAK
Gabungan penggunaan bahan bersifat magnetik dan bioserasi bagi menghasilkan rangka-teras nanobahan telah digunakan secara meluas dalam bidang perubatan. Rangka teras biobahan magnet ini mempunyai potensi yang besar sebagai hipertemia cecair magnetik (MFH) bagi merawat barah. Tujuan kajian ini adalah untuk mengkaji penghasilan rangka-teras nanobahan CoFe2O4/PCL dalam kadar nisbah kobalt ferit dan kaprolakton yang berbeza, mengenal pasti kesan penggunaan polimer bagi mengurangkan penggumpalan zarah-zarah kobalt ferit dan melakukan pencirian struktur, morfologi, haba dan magnetik terhadap nanobahan ini. Rangka-teras nanobahan ini dihasilkan melalui proses pempolimeranin situ. Pembentukannya ditentukan menggunakan teknik pembelauan sinar-x (XRD), spektrometri transformasi Fourier inframerah (FTIR) dan mikroskop transmisi elektron (TEM). Sifat haba nanobahan ini dicirikan menggunakan penganalisis termogravimetri (TGA). Magnetometer sampel bergetar (VSM) pula digunakan bagi mengetahui sifat magnet bahan. Hasil daripada XRD dan spektrum FTIR menunjukkan kehadiran kobalt ferit dan polikaprolakton dalam sampel rangka-teras nanobahan. Morfologi daripada imej TEM menunjukkan rangka-teras nanobahan hanya terbentuk pada nisbah campuran 1:4 kobalt ferit ke kaprolakton.
Kata kunci: Imej TEM; kobalt ferit; nanobahan rangka-teras; polikaprolakton
REFERENCES
Ahmet,
N.A., Deniz, K. & Birgul,
Z.K. 2011. Magnetic nanocomposites with
drug-intercalated layered double hydroxide shell supported on commercial
magnetite and laboratory-made magnesium ferrite core materials. Materials
Science and Engineering C 31(5): 851-857.
Alexiou, C., Jurgons,
R., Schmid, R., Hilpert,
A., Bergemann, C., Parak,
F. & Iro, H. 2005. In vitro and in vivo investigations
of targeted chemotherapy with magnetic nanoparticles. Journal of
Magnetism and Magnetic Materials 293: 389-393.
Amari, N.F., Khoo, K.S., Radiman, S., Yasir, M.S. & Yahaya, R. 2011. Pencirian struktur spektrum, morfologi, haba dan optikal rangka teras nanobahan kobalt ferrit/polikaprolakton (CoFe2O4/PCL). Prosiding Kolokium Siswazah ke-11, pp. 107-109.
Baldi, G., Bonacchi,
D., Innocenti, D.C., Lorenzi,
G. & Sangregorio, C. 2007. Cobalt ferrite nanoparticles: The control of the particle
size and surface state and their effects on magnetic properties Journal of
Magnetism and Magnetic Materials 311(1): 10-16.
Chuang, F-Y. & Yang, S-M. 2008. Cerium dioxide/polyaniline core shell nanocomposite. Journal of Colloid and Interface Science 320: 194-201.
Cristescu, R., Doraiswamy, A., Socol, G., Grigorescu, S., Axente, E., Mihaiescu, D.,
Moldovan, A., Narayan, R.J., Stamatin, I., Mihailescu, I.N., Chisholm, B.J. & Chrisey,
D.B. 2007. Polycaprolactone biopolymer thin films
obtained by matrix assisted pulsed laser evaporation. Applied Surface
Science 253(15): 6476-6479.
Gandhi, N., Singh, K., Ohlan, A., Singh, D.P. & Dhawan,
S.K. 2011. Thermal, dielectric
and microwave absorption properties of polyaniline–CoFe2O4 Nanocomposites. Composites
Science and Technology 71: 1754-176.
Hartono, D., Qin, J.W., Yang,
J.K.L. & Yung, L.Y.L. 2009. Imaging the disruption of phospholipid monolayer by
protein-coated nanoparticles using ordering transitions of liquid crystals. Biomaterials 30(5): 843-849.
Jiang, J. & Ai, L. 2010. Influence of
annealing temperature on the formation, microstructure and magnetic properties
of spinel nanocrystalline cobalt ferrites. Current
Applied Physics 10(1): 284-288.
Jing, J., Lun, H.A.
& Ai, H.L. 2010. Anovel poly(o-anisidine)/CoFe2O4 multifunctional nanocomposite: Preparation, characterization and
properties. Synthetic Metals 160(5): 333-336.
Kakarla, R.R., Lee, K-P., Anantha, I.G. & Kang, H-D. 2007. Organosilane modified magnetite nanoparticles/poly(aniline-co-o/m-aminobenzenesulfionic acid) composites: Synthesis and
characterization. Reactive and Functional Polymers 67(10): 943-954.
Kang, B., Chang, S., Dai,
Y. & Chen, D. 2007. Radiation synthesis and magnetic properties of novel Co0.7Fe0.3/Chitosan
compound nanoparticles for targeted drug carrier. Radiation Physics and
Chemistry 76(6): 968-973.
Kumar, C.S.R. &
Mohammad, F. 2011. Magnetic nanomaterials for hyperthermia-based therapy and
controlled drug delivery. Advanced Drug Delivery Reviews 63(9):
789-808.
Liu, H., Xu, F., Li, L., Wang, Y. & Qiu,
H. 2009. A novel CoFe2O4/polyacrylate nanocomposite prepared via an in situ polymerization in emulsion system. Reactive
and Functional Polymer 69(1): 43-47.
Nicholson, J.W. 1991. The
Chemistry of Polymers. Cambridge.
Pradeep, A., Priyadharsini,
P. & Chandrasekaran, G. 2008. Sol-gel route of synthesis of nanoparticles of
MgFe2O4 and XRD, FTIR and VSM study, Journal
of Magnetism and Magnetic Materials 320(21): 2774-2779.
Pita, M., Abad, J.M.,
Dominguez, C.V., Briones, C., Marti, E.M., Gago, J.A.M., Morales, M.P. & Fernandez, V.M. 2008. Synthesis of cobalt ferrite core/metallic shell
nanoparticles for the development of a specific PNA/DNA biosensor. Journal
of Colloid and Interface Science 321(2): 484-492.
Qin, R., Li, F., Jiang, W.
& Chen, M. 2010. Synthesis and characterization of diethylenetriaminepentaacetic acid-chitosan-coated cobalt ferrite core/shell nanostructures. Materials
Chemistry and Physics 122(2): 498-501.
Saikia, D. & Kumar, A. 2004. Ionic conduction in P(VDF-HFP)/PVDF–(PC + DEC)–LiClO4 polymer
gel electrolyte. Electrochimica Acta49(16): 2581-2589.
Sanjeev, K., Vaishali, S., Saroj, A., Uttam, K.M. & Ravinder, K.K. 2010. Bimodal Co0.5Zn0.5Fe2O4/PANInanocomposites: Synthesis, formation mechanism and
magnetic properties. Composites Science and Technology 70(2): 249-254.
Sun, C., Lee, J.S.H. &
Zhang, M. 2008. Magnetic nanoparticles in
MR imaging and drug delivery. Advanced Drug Delivery Reviews 60(11):
1252-1265.
Tadros, T.F. 2009. Emulsion Science and Technology. Weinheim: Wiley-VCH.
Xu, T., Zhang, N., Nichols,
H.L., Shi, D. & Wen, X. 2007. Modification of nanostructured materials for
biomedical applications. Materials Science and Engineering C 27(3):
579-594.
Yu, M.H., Devi, P.S., Lewis, L.H., Oouma, P., Parise, J.B. &
Gambino, R.J. 2003. Towards a magnetic core-shell nanostructure: Anovel composite made by a citrate-nitrate auto-ignition
process. Materials Science and Engineering B 103(3): 262-270.
Zhang, Z., He, Q., Xiong, J., Xiong, Y. & Xiao,
H. 2008. A novel biomaterial - Fe3O4:TiO2 core-shell nano particle with magnetic performance and high
visible light photocatalytic activity. Optical
Materials 31: 380-384.
*Corresponding author; email: khoo@ukm.my
|