Sains Malaysiana 42(2)(2013): 193–196

 

Structural and Optical Properties of ZnO Thin Film Prepared by Oxidation of Zn Metal Powders

(Struktur and Ciri Optik Filem Nipis ZnO yang Disediakan oleh Kaedah Pengoksidaan

Serbuk Logam ZnO)

 

N.K. Hassan& M.R.Hashim*

Nano-optoelectronic Research Lab, School of Physics

Universiti Sains Malaysia, 11800 Penang, Malaysia

 

Received: 7 January 2012 / Accepted: 21 May 2012

 

ABSTRACT

High quality ZnO nanostructures have been fabricated at room temperature by a simple vacuum thermal evaporator from metallic Zn powders (99.999% purity) on a silicon (100) substrate. The Zn thin films were then transferred into a thermal tube furnace for oxidation at 700°C for different time durations. Time was found to be a critical factor in the synthesis. This was followed by characterization of their morphological, structural and optical properties. The morphology of the grown ZnO nanostructures exhibited several large grains, which increased gradually with increasing oxidation time. The crystallinity of the grown nanostructures was investigated using X-ray diffraction, revealing that the synthesized ZnO was in hexagonal wurtzite phase. The photoluminescence (PL) spectra of the fabricated ZnO nanostructures showed high intensity peak in the UV region due to near-band-edge (NBE) emission in which the structures oxidized for 30 min showing highest intensity.

 

Keywords: Photoluminescence; vacuum thermal evaporator; ZnO nanostructures

 

ABSTRAK

Struktur nano ZnO yang berkualiti tinggi telah difabrikasikan pada suhu bilik menggunakan teknik pengewap terma tervakum yang mudah daripada serbuk logam Zn (99.999% tulen) di atas substrat silikon (100). Filem nipis Zn kemudiannya dipindahkan ke dalam tiub relau pemanas untuk pengoksidaan pada suhu 700°C untuk masa yang berbeza. Masa pengoksidaan dikenal pasti sebagai sebagai faktor yang kritikal dalam sintesis. Ini diikuti oleh pencirian sifat-sifat permukaan, struktur dan optik. Permukaan struktur nano ZnO menunjukkan beberapa butiran yang besar, yang membesar apabila masa pengoksidaan ditingkatkan. Kehabluran struktur nano yang ditumbuh dikaji menggunakan pembelauan sinar-X, menunjukkan ZnO berada dalam fasa heksagonal wurtzit. Spektrum fotoluminesen (PL) struktur nano ZnO menunjukkan keamatan puncak yang tinggi di dalam rantau ultra-lembayung (UV) berpunca daripada pancaran daripada peralihan pinggir jalur dengan struktur teroksida pada 30 min menunjukkan pancaran paling tinggi keamatannya.

 

Kata kunci: Fotoluminesen; pengewap terma tervakum; struktur nano ZnO

REFERENCES

Chang, C-J. & Hung, S-T. 2008. Electrochemical deposition of ZnO pore-array structures and photoconductivity of ZnO/polymer hybrid films. Thin Sold Films 517: 1279-1283.

Chen, Z-G., Li, F., Liu, G., Tang, Y., Cong, H., Lu, G.Q. & Cheng, H-M. 2006. Preparation of high purity ZnO nanobelts by thermal evaporation of ZnS. J. Nanosci. Nanotechnol. 6(3): 704-707.

Chen, Z., Tang, Y., Zhang, L. & Luo, L. 2006. Electrodeposited nanoporous ZnO films exhibiting enhanced performance in dye-sensitized solar cells. Electrochim. Acta. 51: 5870-5875.

Gao, Y-F., Nagai, M., Masuda, Y., Sato, F. & Koumoto, K. 2006. Electrochemical deposition of ZnO film and its photoluminescence properties. J. Cryst. Growth 286: 445-450.

Gupta, S.K., Joshi, A. & Kaur, M. 2010. Development of gas sensors using ZnO nanostructures. J. Chem. Sci. 122(1): 57-62.

Hassan, J.J., Hassan, Z. & Abu-Hassan, H. 2011. High-quality vertically aligned ZnO nanorods synthesized by microwave-assisted CBD with ZnO-PVAcomplex seed layer on Si substrates. J. Alloys Compd. 509: 6711-6719.

Huang, M.H., Mao, S., Feick, H., Yan, H., Wu, Y., Kind, H., Weber E., Russo, R. & Yang, P. 2001. Room-temperature ultraviolet nanowire nanolasers. Science 292(5523): 1897-1899.

Huang, M.H., Wu, Y., Feick, H., Tran, N., Weber, E. & Yang, P. 2001. Catalytic growth of zinc oxide nanowires by vapor transport. Adv. Mater. 13(2): 113-116.

Ismardi, A., Dee, C.F., Hamzah, A.A., Bais, B., Salleh, M.M., Majlis, B.Y. & Gebeshuber, I.C. 2012. Co-synthesis and characterization of In2O3 and ZnO nanowires. Sains Malaysiana 41(4): 459-463.

Jeong, S-H., Kim, B-S. & Lee, B-T. 2003. Photoluminescence dependence of ZnO films grown on Si(100) by radio-frequency magnetron sputtering on the growth ambient. Appl.Phys.Lett. 82(16): 2625-2627.

Kathirvel, P., Manoharan, D., Mohan, S.M. & Kumar, S. 2009. Spectral investigations of chemical bath deposited zinc oxide thin films - ammonia gas sensor. J. of Optoelectronic and Biomedical Materials 1(1): 25-33.

Kitano, M., Okabe, T. & Shiojiri, M. 1995. Growth of electrocrystallized ZnO particles by reaction of vacuum-deposited Zn films with distilled water. J. Cryst. Growth. 152: 73-78.

Kong, X., Sun, X., Li, X. & Li, Y. 2003. Catalytic growth of ZnO nanotubes. Mater. Chem. Phys. 82: 997-1001.

Kumar, M.S., Chhikara, D. & Srivatsa, K.M.K. 2011. Structure-controlled growth of ZnO nanonails by thermal evaporation technique. Cryst. Res. Technol. 46(9): 991- 996.

Look, D.C. 2005. Electrical and optical properties of p-type ZnO. Semicond. Sci. Technol. 20: 55-61.

Park, N-K., Han, G.B., Lee, J.D., Ryu, S.O., Lee, T.J., Chang, W.C. & Chang, C.H. 2006. The growth of ZnO nano-wire by a thermal evaporation method with very small amount of oxygen. Current Applied Physics 6S1: 176-181.

Park, W.I., Kim, D.H., Jung, S-W., & Yi, G-C. 2002. Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods. Appl.Phys.Lett. 80(22): 4232-4234.

Sekar, A., Kim, S.H., Umar, A. & Hahn, Y.B. 2005. Catalyst-free synthesis of ZnO nanowires on Si by oxidation of Zn powders. J. Cryst. Growth 277: 471-478.

Tang, Y., Luo, L., Chen, Z., Jiang, Y., Bihui, L.A., Jia, Z. & Xu, L. 2007. Electrodeposition of ZnO nanotube arrays on TCO glass substrates. Electroch. Commun. 9: 289-292.

Wang, Z.L. 2004. Zinc oxide nanostructures: Growth, properties and applications. J. Phys. Condens. Matter. 16: 829-858.

Ye, N. & Chen, C.C. 2012. Investigation of ZnO nanorods synthesized by a solvothermal method, using Al-doped ZnO seed films. Optical Materials 34(4): 753-756.

Yogamalar, R., Srinivasan, R., Vinu, A., Katsuhiko Ariga, & Bose, A.C. 2009. X-ray peak broadening analysis in ZnO nanoparticles. Solid State Commun. 149: 1919-1923.

Zhang, C. 2010. High-quality oriented ZnO films grown by sol-gel process assisted with ZnO seed layer. Journal of Physics and Chemistry of Solids 71(3): 364-369.

 

 

*Corresponding author; email: roslan@usm.my

 

 

previous