Sains
Malaysiana 42(2)(2013): 193–196
Structural
and Optical Properties of ZnO Thin Film Prepared by Oxidation of Zn Metal
Powders
(Struktur and Ciri Optik Filem Nipis ZnO yang Disediakan oleh
Kaedah Pengoksidaan
Serbuk Logam ZnO)
N.K. Hassan& M.R.Hashim*
Nano-optoelectronic Research Lab, School of Physics
Universiti Sains Malaysia, 11800 Penang, Malaysia
Received: 7 January 2012 / Accepted: 21 May 2012
ABSTRACT
High quality ZnO nanostructures have been fabricated at room
temperature by a simple vacuum thermal evaporator from metallic Zn powders
(99.999% purity) on a silicon (100) substrate. The Zn thin films were then
transferred into a thermal tube furnace for oxidation at 700°C for different
time durations. Time was found to be a critical factor in the synthesis. This
was followed by characterization of their morphological, structural and optical
properties. The morphology of the grown ZnO nanostructures exhibited several
large grains, which increased gradually with increasing oxidation time. The
crystallinity of the grown nanostructures was investigated using X-ray
diffraction, revealing that the synthesized ZnO was in hexagonal wurtzite
phase. The photoluminescence (PL) spectra of the fabricated
ZnO nanostructures showed high intensity peak in the UV region
due to near-band-edge (NBE) emission in which the structures
oxidized for 30 min showing highest intensity.
Keywords: Photoluminescence; vacuum thermal evaporator; ZnO nanostructures
ABSTRAK
Struktur nano ZnO yang berkualiti tinggi telah
difabrikasikan pada suhu bilik menggunakan teknik pengewap terma tervakum yang
mudah daripada serbuk logam Zn (99.999% tulen) di atas substrat silikon (100). Filem nipis Zn kemudiannya
dipindahkan ke dalam tiub relau pemanas untuk pengoksidaan pada suhu 700°C
untuk masa yang berbeza. Masa pengoksidaan dikenal
pasti sebagai sebagai faktor yang kritikal dalam sintesis. Ini diikuti oleh pencirian sifat-sifat permukaan, struktur dan
optik. Permukaan struktur nano ZnO menunjukkan
beberapa butiran yang besar, yang membesar apabila masa pengoksidaan
ditingkatkan. Kehabluran struktur nano yang ditumbuh
dikaji menggunakan pembelauan sinar-X, menunjukkan ZnO berada dalam fasa
heksagonal wurtzit. Spektrum fotoluminesen (PL)
struktur nano ZnO menunjukkan keamatan puncak yang tinggi di dalam rantau
ultra-lembayung (UV) berpunca daripada pancaran daripada
peralihan pinggir jalur dengan struktur teroksida pada 30 min menunjukkan
pancaran paling tinggi keamatannya.
Kata kunci: Fotoluminesen; pengewap terma
tervakum; struktur nano ZnO
REFERENCES
Chang, C-J. & Hung, S-T. 2008. Electrochemical
deposition of ZnO pore-array structures and photoconductivity of ZnO/polymer
hybrid films. Thin Sold Films 517: 1279-1283.
Chen, Z-G., Li, F., Liu, G., Tang, Y., Cong, H., Lu, G.Q.
& Cheng, H-M. 2006. Preparation of high purity ZnO nanobelts by thermal
evaporation of ZnS. J. Nanosci. Nanotechnol. 6(3): 704-707.
Chen, Z., Tang, Y., Zhang, L. &
Luo, L. 2006. Electrodeposited nanoporous ZnO films
exhibiting enhanced performance in dye-sensitized solar cells. Electrochim.
Acta. 51: 5870-5875.
Gao, Y-F., Nagai, M., Masuda, Y.,
Sato, F. & Koumoto, K. 2006. Electrochemical deposition
of ZnO film and its photoluminescence properties. J. Cryst. Growth 286:
445-450.
Gupta, S.K., Joshi, A. & Kaur, M.
2010. Development of gas
sensors using ZnO nanostructures. J. Chem. Sci. 122(1): 57-62.
Hassan, J.J., Hassan, Z. &
Abu-Hassan, H. 2011. High-quality
vertically aligned ZnO nanorods synthesized by microwave-assisted CBD with
ZnO-PVAcomplex seed layer on Si substrates. J. Alloys Compd. 509:
6711-6719.
Huang, M.H., Mao, S., Feick, H., Yan, H., Wu, Y., Kind, H.,
Weber E., Russo, R. & Yang, P. 2001. Room-temperature
ultraviolet nanowire nanolasers. Science 292(5523): 1897-1899.
Huang, M.H., Wu, Y., Feick, H., Tran, N., Weber, E. &
Yang, P. 2001. Catalytic growth of zinc oxide nanowires by
vapor transport. Adv. Mater. 13(2): 113-116.
Ismardi, A., Dee, C.F., Hamzah, A.A.,
Bais, B., Salleh, M.M., Majlis, B.Y. & Gebeshuber, I.C. 2012. Co-synthesis and characterization of In2O3 and ZnO nanowires. Sains Malaysiana 41(4): 459-463.
Jeong, S-H., Kim, B-S. & Lee,
B-T. 2003. Photoluminescence dependence of ZnO films grown on Si(100) by radio-frequency magnetron sputtering on the
growth ambient. Appl.Phys.Lett. 82(16): 2625-2627.
Kathirvel, P., Manoharan, D., Mohan, S.M. & Kumar, S.
2009. Spectral investigations of chemical bath deposited zinc oxide thin films
- ammonia gas sensor. J. of Optoelectronic and Biomedical Materials 1(1):
25-33.
Kitano, M., Okabe, T. & Shiojiri,
M. 1995. Growth of electrocrystallized ZnO
particles by reaction of vacuum-deposited Zn films with distilled water. J.
Cryst. Growth. 152: 73-78.
Kong, X., Sun, X., Li, X. & Li, Y.
2003. Catalytic growth of
ZnO nanotubes. Mater. Chem. Phys. 82: 997-1001.
Kumar, M.S., Chhikara, D. & Srivatsa, K.M.K. 2011. Structure-controlled growth of ZnO nanonails by thermal evaporation
technique. Cryst. Res. Technol. 46(9): 991- 996.
Look, D.C. 2005. Electrical and optical properties of p-type
ZnO. Semicond. Sci. Technol. 20: 55-61.
Park, N-K., Han, G.B., Lee, J.D.,
Ryu, S.O., Lee, T.J., Chang, W.C. & Chang, C.H. 2006. The
growth of ZnO nano-wire by a thermal evaporation method with very small amount
of oxygen. Current Applied Physics 6S1: 176-181.
Park, W.I., Kim, D.H., Jung, S-W., & Yi, G-C. 2002. Metalorganic vapor-phase epitaxial growth of vertically
well-aligned ZnO nanorods. Appl.Phys.Lett. 80(22): 4232-4234.
Sekar, A., Kim, S.H., Umar, A. &
Hahn, Y.B. 2005. Catalyst-free
synthesis of ZnO nanowires on Si by oxidation of Zn powders. J.
Cryst. Growth 277: 471-478.
Tang, Y., Luo, L., Chen, Z., Jiang, Y.,
Bihui, L.A., Jia, Z. & Xu, L. 2007. Electrodeposition of ZnO nanotube arrays on TCO glass substrates. Electroch.
Commun. 9: 289-292.
Wang, Z.L. 2004. Zinc oxide nanostructures: Growth,
properties and applications. J. Phys. Condens. Matter. 16: 829-858.
Ye, N. & Chen, C.C. 2012. Investigation of ZnO nanorods synthesized
by a solvothermal method, using Al-doped ZnO seed films. Optical
Materials 34(4): 753-756.
Yogamalar, R., Srinivasan, R., Vinu,
A., Katsuhiko Ariga, & Bose, A.C. 2009. X-ray peak broadening analysis in ZnO nanoparticles. Solid State Commun. 149: 1919-1923.
Zhang, C. 2010. High-quality oriented ZnO films grown by
sol-gel process assisted with ZnO seed layer. Journal of Physics and
Chemistry of Solids 71(3): 364-369.
*Corresponding
author; email: roslan@usm.my
|