Sains Malaysiana 42(2)(2013):
205–211
Current
and Conductance Modulation at Elevated Temperature in Siliconand InAs-based
Spin
Field-Effect Transistors
(Modulasi Arus dan Konduktans pada Suhu Tinggi dalam Transistor Silikon
dan InAs Berasaskan Spin Kesan Medan)
Dmitri Osintsev*, ViktorSverdlov, AlexanderMakarov & SiegfriedSelberherr
Institute for Microelectronics, TU Wien, Gusshaustr, 27-29, Wien 1040, Austria
Received: 7 January 2012 / Accepted: 21 May 2012
ABSTRACT
Spin field-effect transistors (SpinFETs)
are promising candidates for future integrated microelectronic circuits. A SpinFET is composed of two ferromagnetic contacts (source
and drain), which sandwich a semiconductor channel. Current modulation is
achieved by electrically tuning the gate voltage dependent strength of the
spin-orbit interaction in the semiconductor region. We investigated the
properties of SpinFETs for various parameters - the
band mismatch, the barrier height between the contacts and the channel and the
strength of the spin-orbit coupling, for various temperatures. We demonstrated
that the creation of Schottky barriers between the
channel and the contacts guarantees a pronounced modulation of the magnetoresistance sufficient to open a possibility to
operate SpinFETs at room temperature. We also
demonstrated that silicon fins with [100] orientation exhibit a stronger
dependence on the value of the spin-orbit interaction and are thus preferable
for practical realization of silicon-based SpinFETs.
Keywords: Spin field-effect transistor; spin-orbit interaction;
temperature
ABSTRAK
Transistor spin kesan medan (SpinFETs) adalah calon yang menjanjikan masa depan mikroelektronik litar bersepadu. SpinFET terdiri daripada dua sentuhan feromagnetik (punca dan salir), antara saluran semikonduktor. Modulasi arus dicapai dengan pelarasan secara elektrik kekuatan voltan get bergantung bagi interaksi orbit putaran di rantau semikonduktor. Sifat SpinFETs bagi pelbagai parameter - ketidaksepadanan jalur, ketinggian sempadan di antara sentuhan dan saluran dan kekuatan gandingan putaran orbit untuk pelbagai suhu telah dikaji. Ditunjukkan bahawa pembentukan sempadan Schottky antara saluran dan sentuhan menjamin modulasi ketara magnetorintangan yang mencukupi untuk membuka kemungkinan untuk operasi SpinFETs pada suhu bilik. Ditunjukkan juga bahawa sirip silikon dengan [100] orientasi menunjukkan pergantungan yang kuat kepada nilai interaksi putaran orbit dan dengan itu lebih baik untuk realisasi praktikal SpinFETs berasaskan silikon.
Kata kunci: Interaksi spin-orbit; suhu; transistor spin kesan medan
REFERENCES
Bournel, A., Dollfus, P.,
Bruno, P. & Hesto, P. 1998. Gate-induced spin
precession in an In0.53Ga0.47 as
two dimensional electron gas. European Physical
Journal Applied Physics 4: 1.
Büttiker, M. 1986. Four-terminal
phase-coherent conductance. Physical Review Letters 57:
1761-1764.
Cahay, M. & Bandyopadhyay,
S. 2004. Phase-coherent quantum mechanical spin transport in a weakly
disordered quasi-one-dimensional channel. Physical Review B 69(4):
045303.
Cheng, J., Wu, M. & Fabian, J. 2010. Theory of the spin relaxation of conduction electrons in silicon. Physical Review Letters 104: 016601.
Dash, S., Sharma, S., Le Breton, J., Peiro, J., Jaffres, H., George,
J-M., Lemaitre, A. & Jansen, R. 2011. Spin precession and inverted Hanle effect in a semiconductor near a finite-roughness
ferromagnetic interface. Physical Review B 85: 054410.
Datta, S. & Das, B. 1990. Electronic analog of the
electro-optic modulator. Applied Physics Letters 56(7): 665-667.
Dresselhaus, G. 1955. Spin-orbit coupling effects in Zinc
blende structures. Physical Review 100: 580-586.
Huang, B., Monsma, D. & Appelbaum, I.
2007. Coherent spin transport
through a 350 micron thick silicon wafer. Physical
Review Letters 99: 177209.
Inokuchi, T., Ishikawa, M.,
Sugiyama, H., Saito, Y. & Tezuka, N. 2012. Spin injection and detection between CoFe/AlOx junctions
and SOI investigated by Hanle effect measurements. Journal
of Applied Physics 111: 07C316.
Jansen, R. 2012. Silicon spintronics. Nature Materials 11: 400-408.
Jiang, K.M., Zhang, R., Yang, J., Yue, C-X. & Sun, Z-Y. 2010. Tunneling magnetoresistance properties in ballistic spin field-effect
transistors. IEEE Transactions on Electron Devices 57: 2005.
Landauer, R. 1957. Spatial variation of currents and fields due to
localized scatterers in metallic conduction. IBM
Journal of Research and Development 1(3): 223-231.
Nestoklon, M.O., Ivchenko,
E.L., Jancu, J-M. & Voisin,
P. 2008. Electric field effect on electron spin splitting in SiGe/Si quantum wells. Physical Review B 77(15):
155328.
Osintsev, D., Sverdlov, V., Stanojevic, Z., Makarov, A., Weinbub,
J. & Selberherr, S. 2011. Properties of silicon
ballistic spin fin-based field-effect transistors. Proceedings 219th Meeting
of the Electrochemical Society, Advanced Semiconductor-on-Insulator Technology
and Related Physics 35: 277.
Prada, M., Klimeck, G. & Joynt, R. 2011. Spin-orbit splittings in Si/SiGe quantum wells: from ideal Si membranes to
realistic heterostructures. New Journal of Physics 13: 013009.
Rashba, E.I. 1960. Properties of semiconductors with
an extremum loop. Fizika Tverdogo Tela. 2: 1109.
Sugahara, S. & Nitta, J. 2010. Spin-transistor
electronics: An overview and outlook. Proceedings of the
IEEE 98(12).
Tsuchiya, H., Ando, H., Sawamoto,
S., Maegawa, T., Hara, T., Yao, H. & Ogawa, M.
2010. Comparisons of performance potentials of silicon nanowire and graphene nanoribbon MOSFETs
considering first-principles bandstructure effects. IEEE
Transactions on Electron Devices 57: 406.
Wilamowski, Z. & Jantsch, W.
2004. Suppression of spin relaxation of conduction electrons by cyclotron
motion, Physical Review B 69(3): 035328.
*Corresponding author; email: osintsev@iue.tuwien.ac.at
|