Sains Malaysiana 42(2)(2013):
231–237
Pressure Induced Structural and Electronic Bandgap
Properties of Anatase and Rutile TiO2
(Struktur dan Tekanan Ciri Jurang Jalur Elektronik Anatas dan TiO2 Rutil yang dirangsang oleh
Tekanan)
Tariq Mahmood1,2*, Chuanbao Cao1,
Rashid Ahmed3, Maqsood Ahmed2, M. A. Saeed3,
Abrar Ahmed Zafar2, Talab Husain2 & M.A. Kamran1
1School of Materials
Science and Engineering, Beijing Institute of Technology, Beijing-100081
P.R. China
2Centre for High
Energy Physics, University of the Punjab, Lahore-54590, Pakistan
3Physics Department, Faculty
of Science, Universiti Teknologi Malaysia, UTM Skudai, 81310 Johor
Malaysia
Received: 7 January 2012 / Accepted: 21 May 2012
ABSTRACT
In this study, we present the structural and electronic bandgap
properties of anatase and rutile titanium dioxide by applying ultrasoft
pseudo-potential plane wave approach developed within the frame of density
functional theory (DFT). We used generalized gradient approximation
(GGA)
proposed by Perdew-Burke-Ernzerhof (PBE) for exchange correlation potential. In
our pressure driven investigations, geometry optimization is carried out for
different values of pressure over a range of 0-100 GPa and subsequently related
structural parameters and bandgap values of anatase and rutile titanium dioxide
(TiO2)
have been calculated. In both cases, the lattice constants (a, c) and volume
decreased as the pressure was increased. Similarly, internal parameter for
anatase increased and for rutile TiO2 it decreased under high pressure. The value
of c/a decreased for
anatase and increased for rutile TiO2 as a function of pressure. Our band structure
analysis showed different behavior of bandgap between anatase and rutile TiO2.
The conduction band of anatase TiO2 moved opposite to the conduction band of
rutile TiO2 as we increased the pressure. Additionally we
used the Birch-Murnaghan equation of state to obtain the equilibrium volume (V0), bulk modulus (B0)
and pressure derivative of bulk modulus (B0’)
at zero pressure. The calculated results are in good agreement with previous
experimental as well as theoretical results.
Keywords: Conduction band; density function theory; pressure
ABSTRAK
Di dalam kajian ini, kami membentangkan ciri struktur dan jurang
jalur elektronik bagi anatas dan titanium dioksida rutil dengan menggunakan
pendekatan gelombang satah pseudo-keupayaan ultralembut yang dibangunkan dalam
kerangka teori fungsi ketumpatan (DFT). Kami menggunakan penganggaran ceruk umum
(GGA)
yang diusulkan oleh Perdew-Burke-Ernzerhof (PBE) untuk keupayaan
korelasi pertukaran. Kajian tekanan yang didorong pengoptimuman geometri telah
dijalankan untuk nilai tekanan yang berbeza pada julat 0-100 GPa. Parameter
struktur dan nilai jurang jalur anatas dan titanium dioksida rutil telah
dikira. Dalam kedua-dua kes, nilai pemalar kekisi (a, c) dan isi padu menurun
apabila tekanan meningkat. Parameter dalaman untuk anatas meningkat dan untuk
TiO2 rutil
menurun pada tekanan tinggi. Nilai c/a menurun untuk anatas dan meningkat untuk
TiO2 rutil
sebagai fungsi tekanan. Analisis struktur jalur menunjukkan tingkah laku yang
berbeza antara jurang jalur anatas dan TiO2 rutil. Jalur konduksi
anatas TiO2 bergerak dengan berlawanan arah terhadap
jalur konduksi TiO2, rutil apabila tekanan meningkat.
Persamaan keadaan Birch-Murnaghan telah digunakan untuk mendapatkan isi padu
keseimbangan (V0) modulus pukal (B0) dan terbitan tekanan
modulus pukal (B0’) pada tekanan sifar. Keputusan yang
diperoleh adalah selari dengan keputusan uji kaji dan teori yang sebelumnya.
Kata kunci: Jalur konduksi; tekanan; teori
fungsi ketumpatan
REFERENCES
Arlt, T., Bermejo, M., Blanco, M.A., Gerward, L., Jiang,
J.Z., Staun Olsen, J. & Recio, J.M. 2000. High-pressure polymorphs of
anatase TiO2. Phys. Rev. B 61(21): 14414-14419.
Asahi, R., Taga, Y., Mannstadt, W. & Freeman, A.J. 2000.
Electronic and optical properties of anatase TiO2. Phys. Rev. B 61(11):
7459-7465.
Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K. & Taga, Y.
2001. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293: 269-271.
Baizaee, S.M. & Mousavi, N. 2009. First-principles study
of the electronic and optical properties of rutile TiO2. Phyica B 404:
2111-2116.
Burdett, J.K., Hughbanks, T., Miller, G.J., Richardson, J.W.
Jr. & Smith, J.V. 1987. Structural-electronic relationships in inorganic
solids: Powder neutron diffraction studies of the rutile and anatase polymorphs
of titanium dioxide at 15 and 295 K. J. Am. Chem. Soc. 109(12):
3639-3646.
Carp, O., Huisman, C.L. & Reller, A. 2004. Photoinduced
reactivity of titanium dioxide. Prog. Solid State Chem. 32(1-2): 33-177.
Chen, Q. & Cao, H-H. 2004. Ab initio calculations
of electronic structure of anatase TiO2 Chinese Physics B 13(12): 2121.
Cho, E., Han, S., Ahn, H-S., Lee, K-R., Kim, S.K. &
Hwang, C.S. 2006. First-principles study of point defects in rutile TiO2−x. Phys. Rev. B 73(19): 193202.
Di Valentin, C., Pacchioni, G. & Selloni, A. 2004.
Origin of the different photoactivity of n-doped anatase and rutile TiO2. Phys.
Rev. B 70(8): 085116.
Di Valentin, C., Pacchioni, G., Selloni, A., Livraghi, S.
& Giamello, E. 2005. Characterization of paramagnetic species in n-doped
TiO2 powders
by EPR spectroscopy and DFT calculations. J. Phys. Chem. B 109:
11414-11419.
Diebold, U. 2003. The surface science of titanium dioxide. Surf.
Sci. Rep. 48(5-8): 53-229.
Diwald, O., Thompshon, T.L., Zubkov, T., Goralski, E.G.,
Walck, S.D. & Yates, J.T. Jr. 2004. Photochemical activity of
nitrogen-doped rutile TiO2(110) in visible light. J. Phys. Chem. B 108(19):
6004-6008.
Fische, T.H. & Almlof, J. 1992. General methods for
geometry and wave function optimization. J. Phys. Chem. 96: 9768-9774.
Fox, H., Newman, K.E., Schneider, W.F. & Corecelli, S.A.
2010. Bulk and surface properties of rutile TiO2 from
self-consistent-charge density functional tight binding. J. Chem. Theory
Comput. 6: 499-507.
Fujishima, A. & Honda, K. 1972. Electrochemical
photolysis of water at a semiconductor electrode. Nature 238(5358):
37-38.
Gole, J.L., Stout, J.D., Burda, C., Lou, Y. & Chen, X.
2004. Highly efficient formation of visible light tunable TiO2-xNx photocatalysts
and their transformation at the nanoscale. J. Phys. Chem. B 108(4):
1230-1240.
Griffin, G.L. & Siefering, K.L. 1990. Growth kinetics of
CVD TiO2:
Influence of carrier gas. J. Electrochem. Soc. 137(4): 1206-1208.
Irie, H., Watanabe, Y. & Lindquist, S-E. 2003.
Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powders. J. Phys. Chem. B 107(23): 5483-5486.
Islam, M.M., Bredow, T. & Gerson, A. 2007. Electronic
properties of oxygen-deficient and aluminum-doped rutile TiO2 from first principles. Phys.
Rev. B 76(4): 045217.
Iuga, M., Steinle-Neumann, G. & Meinhardt, J. 2007. Ab-initio simulation of elastic constants for some ceramic materials. Eur. Phys.
J. B 58: 127-133.
Janisch, R., Gopal, P. & Spaldin, N.A. 2005. Transition
metal-doped TiO2 and ZnO-present status of the field. J.
Phys.: Condens. Matter 17(27): R657.
Khan, S.U.M., Al-Shahry, M. & Ingler, W.B. Jr. 2002.
Efficient photochemical water splitting by a chemically modified n-TiO2. Science 297(5590): 2243-2245.
Labat, F., Baranek, P., Domain, C., Minot, C. & Adamo,
C. 2007. Density functional theory analysis of the structural and electronic
properties of TiO2 rutile and anatase polytypes: Performances
of different exchange-correlation functional. J. Chem. Phys. 126(15):
154703.
Lazzeri, M., Vittadini, A. & Selloni, A. 2001. Structure
and energetics of stoichiometric TiO2 anatase surfaces. Phys. Rev. B 63(15):
155409.
Lin, Zh., Orlov, A., Lambert, R.M. & Payne, M.C. 2005.
New insights into the origin of visible light photocatalytic activity of
nitrogen-doped and oxygen-deficient anatase TiO2. J. Phys. Chem. B 109(44):
20948-20952.
Lindgren, T., Mwabora, J.M., Avendano, E., Jansson, J.,
Hoel, A., Granqvist, C-G. & Lindquist, S-E. 2003. Photoelectrochemical and
optical properties of nitrogen doped titanium dioxide films prepared by
reactive DC magnetron sputtering. J. Phys. Chem. B 107(24): 5709-5716.
Liu, Y., Ni, L., Ren, Z., Xu, G., Song, C. & Han, G.
2009. Negative pressure induced ferroelectric phase transition in rutile TiO2. J. Phys.: Condens. Matter 21(27): 275901.
Ma, X.G., Liang, P., Miao, L., Bei, S.W., Zhang, C.K., Xu,
L. & Jiang, J.J. 2009. Pressure-induced phase transition and elastic
properties of TiO2 polymorphs. Phys. Status Solidi B 246(9):
2132-2139.
Mattioli, G., Filippone, F., Alippi, P. & Bonapasta,
A.A. 2008. Ab initio study of the electronic states induced by oxygen
vacancies in rutile and anatase TiO2. Phys. Rev. B 78(24): 241201.
Monkhorst, H.J. & Pack, J.D. 1976. Special points for
Brillouin-zone integrations. Phys. Rev. B 13: 5188-5192.
Murnaghan, F.D. 1944. The compressibility of media
under extreme pressures. Proc. Natl. Acad. Sci. USA 30(9): 244-247.
Nakamura, R., Tanaka, T. & Nakato, Y. 2004. Mechanism
for visible light responses in anodic photocurrents at n-doped TiO2 film
electrodes. J. Phys. Chem. B 108(30): 10617-10620.
Pascual,
J., Camassel, J. & Mathieu, H. 1978. Fine structure in the intrinsic
absorption edge of TiO2. Phys. Rev. B 18(10): 5606-5614.
Perdew,
J.P., Burke, K. & Ernzerhof, M. 1996. Generalized gradient approximation
made simple. Phys. Rev. Lett. 77: 3865-3868.
Persson,
C. & da Silva, A.F. 2005. Strong polaronic effects on rutile TiO2 electronic band edges. Appl. Phys. Letts. 86(23): 231912.
Sakthivel,
S. & Kisch, H. 2003. Photocatalytic and photoelectrochemical properties of
nitrogen-doped titanium dioxide. ChemPhysChem 4(5): 487-490.
Segall,
M.D., Lindan, P., Probet, M.J., Pickard, C.J., Hasnip, P.J., Clark, S.J. &
Payne, M.C. 2002. First-principles simulation: Ideas, illustrations and the
CASTEP code. J. Phys. Condens. Matter 14: 2717-2744.
Shi,
H., Luo, W., Johansson, B. & Ahujia, R. 2009. Electronic and elastic
properties of CaF2 under high pressure from ab initio calculations. J.
Phys. Condens. Matter 21(41): 415501.
Shirley,
R., Kraft, M. & Inderwildi, O.R. 2010. Electronic and optical properties of
aluminium-doped anatase and rutile TiO2 from ab initio calculations. Phys. Rev. B 81: 075111.
Swamy,
V. & Muddle, B.C. 2007. Ultrastiff cubic TiO2 identified via
first-principles calculations. Phys. Rev. Lett. 98(3): 035502.
Tang,
H., Berger, H., Schmid, P.E., Levy, F. & Burri, G. 1993. Photoluminescence
in TiO2 anatase single crystals. Solid State Commun. 87(9):
847-850.
Tariq
Mahmood, Chuanbao Cao, Waheed S. Khan, Zahid Usman, Faheem K. Butt, Sajad
Hussain. 2012. Electronic, elastic, optical properties of rutile TiO2 under
pressure: A DFT study. Physica B: Condensed Matter 207: 958-965.
Thilagam,
A., Simpson, D.J. & Gerson, A.R. 2011. A first-principles study of the
dielectric properties of TiO2 polymorphs. J. Phys. Condens. Matter 23(2):
025901.
Varghese,
O.K. & Grimes, C.A. 2003. Metal oxide nanoarchitectures for environmental
sensing. J. Nanosci. Nanotech. 3(4): 277-293.
Wu,
J.M. & Chen, C.J. 1990. Effect of powder characteristics on microstructures
and dielectric properties of (Ba,Nb)-doped titania ceramics. J. Am. Ceram.
Soc. 73(2): 420-424.
Yahya
Al-Khatabeh, Kanani K.M. Lee and Boris Kiefer. 2009. High-pressure behavior of
TiO2 as determined by experiment and theory. Phys. Rev. B 79(13):
134114.
Yin,
W-J., Chen, S., Yang, J-H., Gong, X-G., Yan, Y. & Wei, S-H. 2010. Effective
bandgap narrowing of anatase TiO2 by strain along a soft crystal
direction. Appl. Phys. Lett. 96(22): 221901.
Zhao,
W., Ma, W., Chen, Ch., Zhao, J. & Shuai, Zh. 2004. Efficient degradation of
toxic organic pollutants with Ni2O3/TiO2-xBx under visible irradiation. J. Am. Chem. Soc. 126(15): 4782-4783.
Zhou,
X-F., Dong, X., Qian, G-R., Zhang, L., Tian, Y. & Wang, H-T. 2010. Unusual
compression behavior of TiO2 polymorphs from first principles. Phys.
Rev. B 82(6): 060102(R).
*Corresponding
author; email: tariq_mahmood78@hotmail.com
|