Sains Malaysiana 42(4)(2013): 481–485
Properties
of ENR-50 Based Electrolyte System
(Sifat Sistem Elektrolit Berasaskan ENR-50)
N. Zainal* & N.S. Mohamed
Centre
for Foundation Studies in Science, University of Malaya, 50603 Kuala Lumpur
Malaysia
N. Zainal*
Institute
of Graduate Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia
R. Idris
Advanced
Materials Research Centre, SIRIM Berhad , 09000 Kulim Kedah, Malaysia
Received:
15 June 2011 / Accepted: 7 March 2012
ABSTRACT
In this work, epoxidized natural rubber
50 (ENR-50)
has been used as a host polymer for the preparation of electrolyte system.
Attenuated total reflection-fourier transform
infrared spectroscopic analyses showed the presence of lithium salt-ENR interactions.
The glass transition temperature displayed an increasing trend with the
increase in salt concentration indicating that the ionic conductivity was not
influenced by segmental motion of the ENR-50 chains. The increase in glass
transition temperature with the addition of salt was due to the formation of
transient cross-linking between ENR-50 chains via the coordinated interaction
between ENR-50
chains and salt. The highest room temperature ionic conductivity obtained was
in the order of 10-5 S cm-1 for the film containing 50 wt% of lithium salt. The ionic conductivity of
this electrolyte system increased with increasing temperature and obeyed the
Vogel-Tamman-Fulcher behavior. The increase in ionic conductivity of the electrolyte system with
salt concentration could also be correlated to the charge carriers concentration and/or migration rate of charge carriers.
Keywords: Activation energy; conductivity; ENR-50; VTF
ABSTRAK
Dalam kajian ini, getah asli terepoksi 50 (ENR-50) digunakan sebagai polimer perumah untuk penyediaan sistem elektrolit. Analisis menggunakan spektroskopi inframerah menunjukkan terdapat interaksi garam litium dengan ENR. Suhu peralihan kaca meningkat dengan penambahan kepekatan garam yang menunjukkan bahawa kekonduksian ion tidak dipengaruhi oleh pergerakan segmen rantai ENR-50 itu. Kenaikan suhu peralihan kaca dengan penambahan garam mungkin disebabkan oleh pembentukan hubungan silang sementara rantai ENR-50 melalui interaksi antara rantai ENR-50 dan garam. Kekonduksian ion tertinggi yang diperoleh adalah dalam tertib 10-5 S sm-1 bagi filem yang mengandungi 50% berat garam litium. Kekonduksian ion bagi sistem elektrolit ini meningkat dengan penambahan suhu dan mematuhi perlakuan Vogel-Tamman-Fulcher. Penambahan kekonduksian ion bagi sistem elektrolit ini dengan kepekatan garam juga boleh dihubungkan dengan kepekatan pembawa cas dan/atau kadar pemindahan cas.
Kata kunci: ENR-50; kekonduksian; tenaga pengaktifan; VTF
REFERENCES
Ahmad, A., Rahman, M.Y.A., Ali, M.L.M., Hashim,
H. & Kalam, F.A. 2007. Solid polymer electrolyte of
PVC-ENR-LiClO4. Ionics 13: 67-70.
Gan, S.N. & Hamid, Z.A. 1997. Partial
conversion of epoxide groups to diols in epoxidized natural rubber. Polymer 38(8): 1953-1956.
Glasse, M.D., Idris,
R., Latham, R.J., Linford, R.G. & Schlindwein, W.S. 2002. Polymer electrolytes based on modified natural
rubber. Solid State Ionics 147: 289-294.
Idris, R., Glasse,
M.D., Latham, R.J., Linford, R.G. & Schlindwein, W.S. 2001. Polymer electrolytes based on modified natural rubber
for use in rechargeable lithium batteries. Journal of Power Sources 94(2):
206-211.
Idris, R., Mohd,
N.H.N. & Arjan, N.M. 2007. Preparation and characterization of the polymer electrolyte
system ENR50/
PVC/EC/PC/LiN(CF3SO2)2
for electrochemical device applications. Ionics 13:
227-230.
Johansson, A., Gogoll, A. & Tegenfeldt, J. 1995. Diffusion and ionic
conductivity in Li(CF3SO3)PEG10 and LiN(CF3SO2)2 PEG10. Polymer 37:
1387-1393.
Kim, D.W., Park, J.K., Bae, J.S.
& Pyun, S.I. 1996. Electrochemical characteristics of blended polymer electrolytes
containing lithium salts. J. Polym. Sci. B: Polym. Phys. 34: 2127-2137.
Kim, H.S., Idris, R. & Moon,
S.I. 2004. Synthesis and electrochemical
performances of epoxidised natural rubber for
lithium-ion polymer batteries. Bulletin of Electrochemistry 20:
465-469.
Kim,
J.H., Min, B.R., Won, J. & Kang, Y.S. 2003. Analysis of the glass
transition behavior of polymer-salt complexes: An extended configurational entropy model. J. Phys. Chem. B 107: 5901-5905.
Mohamed,
S.N., Johari, N.A., Ali, A.M.M., Harun,
M.K. & Yahya, M.Z.A. 2008. Electrochemical
studies on epoxidized natural rubber-based gel
polymer electrolytes for lithium-air cells. Journal of Power Sources 183:
351-354.
Razali, I. & Wan Siti Nor, W.A.H. 2007. Characterization of
plasticized and nonplasticized epoxidized natural rubber based polymer electrolyte systems. Solid State Science and
Technology 15(1): 147-155.
Rajendran, S., Sivakumar, M. & Subadevi, R. 2003. Effect of salt
concentration in poly(vinyl alcohol)-based solid
polymer electrolytes. Journal of Power Sources 124: 225-230.
Ramesh, S. & Chien Lu, S.
2008. Effect of nanosized silica in poly(methyl methacrylate)-lithium bis(trifluromethanesulfonyl)imide based polymer electrolytes. Journal
of Power Sources 185: 1439-1443.
Subban, R.H.Y. 2004. Some properties of
plasticized and composite PVC-based polymer electrolytes and
LiCoO2/PVC-LiCF3SO3-SiO2/MCMB electrochemical cells. Ph.D Thesis. University of Malaya (unpublished).
*Corresponding
author; email: nlin@um.edu.my
|