Sains Malaysiana 42(4)(2013): 537–546

 

Glass Fiber and Nanoclay Reinforced Polypropylene Composites: Morphology, Thermal and Mechanical Properties

(Polipropilena Diperkuat dengan Gentian Kaca dan Nanotanahliat: Morfologi, Terma dan Mekanik)

 

 

Normasmira A. Rahman*, Aziz Hassan, R. Yahya & R.A. Lafia-Araga

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

 

R.A. Lafia-Araga

Department of Chemistry, Federal University of Technology, P.M.B. 65, Minna, 92001

Niger State, Nigeria

 

Received: 27 June 2011 / Accepted: 26 April 2012

 

ABSTRACT

Hybrid composites of polypropylene (PP)/nanoclay (NC)/glass fiber (GF) were prepared by extrusion and injection molding. Molded specimens were analyzed by transmission electron microscopy (TEM), thermogravimetric analysis (TGA), tensile and flexural tests. TEM results revealed NC particle intercalation. TGA results showed that the incorporation of clay into the GF composite improves the thermal stability of the material. The initial thermal decomposition temperatures also shifted to higher values. Incorporation of GF into PP lowers the tensile strength of the binary composite, indicating poor fiber-matrix interfacial adhesion. However, introducing NC increased the strength of the ternary composites. Tensile modulus was enhanced with the incorporation of GF and further increased with an introduction of NC. Flexural strength and flexural modulus are both enhanced with an increase in GF and NC loading.

 

Keywords: Hybrid composites; mechanical property; nanostructured materials; thermal property

 

ABSTRAK

 

Bahan komposit hibrid polipropilena (PP) / tanah liat (TL) / gentian kaca (GK) disediakan dengan menggunakan ekstrusi dan acuan suntikan. Sifat morfologi bahan komposit acuan suntikan dikaji menggunakan teknik TEM. Kestabilan terma bahan komposit dianalisis menggunakan teknik TGA, manakala ciri-ciri mekanikal komposit dikaji dengan menggunakan ujian regangan dan lenturan. Analisis TGA menunjukkan bahawa penambahan TL ke dalam komposit yang mengandungi GK meningkatkan kestabilan terma bahan tersebut. Selain itu, suhu penguraian peringkat awal bahan komposit juga didapati beranjak ke nilai yang lebih tinggi. Penambahan GK ke dalam PP didapati menyebabkan penurunan nilai kekuatan regangan komposit perduaan, menunjukkan bahawa interaksi antara muka antara GK dan PP adalah lemah. Walau bagaimanapun, kekuatan regangan komposit pertigaan menunjukkan peningkatan dengan penambahan TL ke dalam sistem. Penambahan GK meningkatkan modulus regangan komposit dan nilai ini bertambah dengan kehadiran TL ke dalam sistem. Kekuatan dan modulus bagi ujian lenturan didapati meningkat dengan penambahan GK dan TL ke dalam bahan komposit.

 

Kata kunci: Bahan berstruktur nano; komposit hibrid; sifat mekanik; sifat terma

 

REFERENCES

 

Asi, O. 2009. Mechanical properties of glass-fiber reinforced epoxy composites filled with Al2O3 particles. J. Reinf. Plast. Compos. 28(23): 2861-2867.

ASTM Standard D-638. 2003. Standard Test Method for Tensile Properties of Plastics, ASTM International, West Coshoshocken, PA, DOI 10.1520/D0638-03, www.astm.org.

ASTM Standard D-790. 2010. Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials, ASTM International, West Coshoshocken, PA, DOI 10.1520/D0790-10, www.astm.org.

Chandradass, J., Ramesh Kumar, M. & Velmurugan, R. 2008. Effect of clay dispersion on mechanical, thermal and vibration properties of glass fiber-reinforced vinyl ester composites. J. Reinf. Plast. Compos. 27(15): 1585-1601.

Chen, X., Guo, Q. & Mi, Y. 1998. Bamboo fiber-reinforced polypropylene composites: A study of the mechanical properties. J. Appl. Polym. Sci. 69(10): 1891-1899.

Duquesne, S., Jama, C., Le Bras, M., Delobel, R., Recourt, P. & Gloaguen, J.M. 2003. Elaboration of EVA-nanoclay systems--characterization, thermal behaviour and fire performance. Compos. Sci. Technol. 63(8): 1141-1148.

Fu, S.Y. & Lauke, B. 1998. Characterization of tensile behaviour of hybrid short glass fibre/calcite particle/ABS composites. Compos. Part A. 29(5-6): 575-583.

Haque, A., Shamsuzzoha, M., Hussain, F. & Dean, D. 2003. S2-glass/epoxy polymer nanocomposites: manufacturing, structures, thermal and mechanical properties. J. Compos. Mater. 37(20): 1821-1837.

Hassan, A., Normasmira, A.R. & Yahya, R. 2011. Extrusion and injection-molding of glass fiber/MAPP/polypropylene: Effect of coupling agent on DSC, DMA and mechanical properties. J. Reinf. Plast. Compos. 30(14): 1223-1232.

Hiscock, D.F. & Bigg, D.M. 1989. Long fiber reinforced thermoplastic matrix composites by slurry deposition. Polym. Compos. 10(3): 145-149.

Hong, C.K., Kim, M.J., Oh, S.H., Lee, Y.S. & Nah, C. 2008. Effects of polypropylene-g-(maleic anhydride/styrene) compatibilizer on mechanical and rheological properties of polypropylene/clay nanocomposites. J. Ind. Eng. Chem. 14(2): 236-242.

Hussain, F., Roy, S., Narasimhan, K., Vengadassalam, K. & Lu, H. 2007. E-glass-polypropylene pultruded nanocomposite: Manufacture, characterization, thermal and mechanical properties. J. Thermoplast. Compos. Mater. 20(4): 411-434.

Hussain, M., Nakahira, A. & Niihara, K. 1996. Mechanical property improvement of carbon fiber reinforced epoxy composites by Al2O3 filler dispersion. Mater. Lett. 26(3): 185-191.

Hussain, M., Oku, Y., Nakahira, A. & Niihara, K. 1996. Effects of wet ball-milling on particle dispersion and mechanical properties of particulate epoxy composites. Mater. Lett. 26(3): 177-184.

Jordan, J., Jacob, K.I., Tannenbaum, R., Sharaf, M.A. & Jasiuk, I. 2005. Experimental trends in polymer nanocomposites-a review. Mater. Sci. Eng. A. 393(1-2): 1-11.

Kornmann, X., Rees, M., Thomann, Y., Necola, A., Barbezat, M. & Thomann, R. 2005. Epoxy-layered silicate nanocomposites as matrix in glass fibre-reinforced composites. Compos. Sci. Technol. 65(14): 2259-2268.

Krump, H., Luyt, A.S. & Hudec, I. 2006. Effect of different modified clays on the thermal and physical properties of polypropylene-montmorillonite nanocomposites. Mater. Lett. 60(23): 2877-2880.

Lafia-Araga, R.A., Hassan, A., Yahya, R., Rahman, N.A., Hornsby, P.R. & Heidarian, J. 2012. Thermal and mechanical properties of treated and untreated Red Balau (Shorea dipterocarpaceae)/LDPE composites. J. Reinf. Plast. Compos. 31(4): 215-224.

Lee, N.J. & Jang, J. 1999. The effect of fibre content on the mechanical properties of glass fibre mat/polypropylene composites. Compos. Part A. 30(6): 815-822.

Modesti, M., Lorenzetti, A., Bon, D. & Besco, S. 2006. Thermal behaviour of compatibilised polypropylene nanocomposite: Effect of processing conditions. Polym. Degrad. Stabil. 91(4): 672-680.

Mohan, T.P. & Kanny, K. 2011. Influence of nanoclay on rheological and mechanical properties of short glass fiber-reinforced polypropylene composites. J. Reinf. Plast. Compos. 30(2): 152-160.

Mohd Ishak, Z.A., Ariffin, A. & Senawi, R. 2001. Effects of hygrothermal aging and a silane coupling agent on the tensile properties of injection molded short glass fiber reinforced poly (butylene terephthalate) composites. Eur. Polym. J. 37(8): 1635-1647.

Norkhairunnisa, M., Azhar, A.B. & Shyang, C.W. 2007. Effects of organo montmorillonite on the mechanical and morphological properties of epoxy/glass fiber composites. Polym. Int. 56(4): 512-517.

Oksman, K., Mathew, A.P., Långström, R., Nyström, B. & Joseph, K. 2009. The influence of fibre microstructure on fibre breakage and mechanical properties of natural fibre reinforced polypropylene. Compos. Sci. Technol. 69(11-12): 1847-1853.

Samal, S.K., Nayak, S.K. & Mohanty, S. 2008. Polypropylene nanocomposites: Effect of organo-modified layered silicates

on mechanical, thermal & morphological performance. J. Thermoplast. Compos. Mater. 21(3): 243-263.

Sharma, S.K. & Nayak, S.K. 2009. Surface modified clay/polypropylene (PP) nanocomposites: Effect on physico-mechanical, thermal and morphological properties. Polym. Degrad. Stabil. 94(1): 132-138.

Thomason, J.L. 2002. The influence of fibre length and concentration on the properties of glass fibre reinforced polypropylene: 5. Injection moulded long and short fibre PP. Compos. Part A. 33(12): 1641-1652.

Thomason, J.L., Vlug, M.A., Schipper, G. & Krikor, H. 1996. Influence of fibre length and concentration on the properties of glass fibre-reinforced polypropylene: Part 3. Strength and strain at failure. Compos. Part A. 27(11): 1075-1084.

Vilaseca, F., Valadez-Gonzalez, A., Herrera-Franco, P.J., P lach, M., López, J.P. & Mutjé, P. 2010. Biocomposites from abaca strands and polypropylene. Part I: Evaluation of the tensile properties. Bioresource Technol. 101(1): 387-395.

Wetzel, B., Haupert, F., Friedrich, K., Zhang, M.Q. & Rong, M.Z. 2002. Impact and wear resistance of polymer nanocomposites at low filler content. Polym. Eng. Sci. 42(9): 1919-1927.

Wetzel, B., Haupert, F. & Qiu Zhang, M. 2003. Epoxy nanocomposites with high mechanical and tribological performance. Compos. Sci. Technol. 63(14): 2055-2067.

Zhao, R., Huang, J., Sun, B. & Dai, G. 2001. Study of the mechanical properties of mica-filled polypropylene-based GMT composite. J. Appl. Polym. Sci. 82(11): 2719-2728.

 

 

*Corresponding author; email: nmmira@um.edu.my

 

previous