Sains Malaysiana 42(4)(2013): 537–546
Glass
Fiber and Nanoclay Reinforced Polypropylene Composites: Morphology, Thermal and
Mechanical Properties
(Polipropilena Diperkuat dengan Gentian Kaca dan Nanotanahliat:
Morfologi, Terma dan Mekanik)
Normasmira
A. Rahman*, Aziz Hassan, R. Yahya & R.A. Lafia-Araga
Department
of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
R.A. Lafia-Araga
Department of Chemistry, Federal University of Technology, P.M.B.
65, Minna, 92001
Niger State, Nigeria
Received: 27 June 2011 / Accepted: 26 April 2012
ABSTRACT
Hybrid composites of polypropylene (PP)/nanoclay
(NC)/glass
fiber (GF) were prepared by extrusion and injection molding.
Molded specimens were analyzed by transmission electron microscopy (TEM),
thermogravimetric analysis (TGA), tensile and flexural
tests. TEM results revealed NC particle
intercalation. TGA results showed that the
incorporation of clay into the GF composite improves the
thermal stability of the material. The initial thermal decomposition
temperatures also shifted to higher values. Incorporation of GF into PP lowers the tensile strength of the binary composite, indicating
poor fiber-matrix interfacial adhesion. However, introducing NC increased
the strength of the ternary composites. Tensile modulus was enhanced with the
incorporation of GF and further increased with an
introduction of NC. Flexural strength and flexural
modulus are both enhanced with an increase in GF and NC loading.
Keywords: Hybrid composites; mechanical property; nanostructured
materials; thermal property
ABSTRAK
Bahan komposit hibrid polipropilena (PP) /
tanah liat (TL) / gentian kaca (GK)
disediakan dengan menggunakan ekstrusi dan acuan suntikan. Sifat morfologi
bahan komposit acuan suntikan dikaji menggunakan teknik TEM.
Kestabilan terma bahan komposit dianalisis menggunakan teknik TGA,
manakala ciri-ciri mekanikal komposit dikaji dengan menggunakan ujian regangan
dan lenturan. Analisis TGA menunjukkan bahawa penambahan TL ke
dalam komposit yang mengandungi GK meningkatkan kestabilan
terma bahan tersebut. Selain itu, suhu penguraian peringkat awal bahan komposit
juga didapati beranjak ke nilai yang lebih tinggi. Penambahan GK ke
dalam PP didapati menyebabkan penurunan nilai kekuatan regangan
komposit perduaan, menunjukkan bahawa interaksi antara muka antara GK dan PP adalah lemah. Walau bagaimanapun, kekuatan regangan komposit
pertigaan menunjukkan peningkatan dengan penambahan TL ke
dalam sistem. Penambahan GK meningkatkan modulus regangan
komposit dan nilai ini bertambah dengan kehadiran TL ke
dalam sistem. Kekuatan dan modulus bagi ujian lenturan didapati meningkat
dengan penambahan GK dan TL ke
dalam bahan komposit.
Kata kunci: Bahan berstruktur nano; komposit
hibrid; sifat mekanik; sifat terma
REFERENCES
Asi, O. 2009. Mechanical properties of glass-fiber
reinforced epoxy composites filled with Al2O3 particles. J. Reinf. Plast. Compos.
28(23): 2861-2867.
ASTM Standard D-638. 2003. Standard Test Method for
Tensile Properties of Plastics, ASTM International, West Coshoshocken, PA, DOI
10.1520/D0638-03, www.astm.org.
ASTM Standard D-790. 2010. Standard Test Methods for
Flexural Properties of Unreinforced and Reinforced Plastics and Electrical
Insulating Materials, ASTM International, West Coshoshocken, PA, DOI
10.1520/D0790-10, www.astm.org.
Chandradass, J., Ramesh Kumar, M. & Velmurugan, R. 2008.
Effect of clay dispersion on mechanical, thermal and vibration properties of
glass fiber-reinforced vinyl ester composites. J. Reinf. Plast. Compos.
27(15): 1585-1601.
Chen, X., Guo, Q. & Mi, Y. 1998. Bamboo fiber-reinforced
polypropylene composites: A study of the mechanical properties. J. Appl.
Polym. Sci. 69(10): 1891-1899.
Duquesne, S., Jama, C., Le Bras, M., Delobel, R., Recourt,
P. & Gloaguen, J.M. 2003. Elaboration of EVA-nanoclay
systems--characterization, thermal behaviour and fire performance. Compos.
Sci. Technol. 63(8): 1141-1148.
Fu, S.Y. & Lauke, B. 1998. Characterization of tensile
behaviour of hybrid short glass fibre/calcite particle/ABS composites. Compos.
Part A. 29(5-6): 575-583.
Haque, A., Shamsuzzoha, M., Hussain, F. & Dean, D. 2003.
S2-glass/epoxy polymer nanocomposites: manufacturing, structures, thermal and
mechanical properties. J. Compos. Mater. 37(20): 1821-1837.
Hassan, A., Normasmira, A.R. & Yahya, R. 2011. Extrusion
and injection-molding of glass fiber/MAPP/polypropylene: Effect of coupling
agent on DSC, DMA and mechanical properties. J. Reinf. Plast. Compos. 30(14):
1223-1232.
Hiscock, D.F. & Bigg, D.M. 1989. Long fiber reinforced
thermoplastic matrix composites by slurry deposition. Polym. Compos.
10(3): 145-149.
Hong, C.K., Kim, M.J., Oh, S.H., Lee, Y.S. & Nah, C.
2008. Effects of polypropylene-g-(maleic anhydride/styrene) compatibilizer on
mechanical and rheological properties of polypropylene/clay nanocomposites. J.
Ind. Eng. Chem. 14(2): 236-242.
Hussain, F., Roy, S., Narasimhan, K., Vengadassalam, K.
& Lu, H. 2007. E-glass-polypropylene pultruded nanocomposite: Manufacture,
characterization, thermal and mechanical properties. J. Thermoplast. Compos.
Mater. 20(4): 411-434.
Hussain, M., Nakahira, A. & Niihara, K. 1996. Mechanical
property improvement of carbon fiber reinforced epoxy composites by Al2O3 filler
dispersion. Mater. Lett. 26(3): 185-191.
Hussain, M., Oku, Y., Nakahira, A. & Niihara, K. 1996.
Effects of wet ball-milling on particle dispersion and mechanical properties of
particulate epoxy composites. Mater. Lett. 26(3): 177-184.
Jordan, J., Jacob, K.I., Tannenbaum, R., Sharaf, M.A. &
Jasiuk, I. 2005. Experimental trends in polymer nanocomposites-a review. Mater.
Sci. Eng. A. 393(1-2): 1-11.
Kornmann, X., Rees, M., Thomann, Y., Necola, A., Barbezat,
M. & Thomann, R. 2005. Epoxy-layered silicate nanocomposites as matrix in
glass fibre-reinforced composites. Compos. Sci. Technol. 65(14):
2259-2268.
Krump, H., Luyt, A.S. & Hudec, I. 2006. Effect of
different modified clays on the thermal and physical properties of
polypropylene-montmorillonite nanocomposites. Mater. Lett. 60(23):
2877-2880.
Lafia-Araga, R.A., Hassan, A., Yahya, R., Rahman, N.A.,
Hornsby, P.R. & Heidarian, J. 2012. Thermal and mechanical properties of
treated and untreated Red Balau (Shorea dipterocarpaceae)/LDPE composites. J.
Reinf. Plast. Compos. 31(4): 215-224.
Lee, N.J. & Jang, J. 1999. The effect of fibre content
on the mechanical properties of glass fibre mat/polypropylene composites. Compos.
Part A. 30(6): 815-822.
Modesti, M., Lorenzetti, A., Bon, D. & Besco, S. 2006.
Thermal behaviour of compatibilised polypropylene nanocomposite: Effect of
processing conditions. Polym. Degrad. Stabil. 91(4): 672-680.
Mohan, T.P. & Kanny, K. 2011. Influence of nanoclay on
rheological and mechanical properties of short glass fiber-reinforced
polypropylene composites. J. Reinf. Plast. Compos. 30(2): 152-160.
Mohd Ishak, Z.A., Ariffin, A. & Senawi, R. 2001. Effects
of hygrothermal aging and a silane coupling agent on the tensile properties of
injection molded short glass fiber reinforced poly (butylene terephthalate)
composites. Eur. Polym. J. 37(8): 1635-1647.
Norkhairunnisa, M., Azhar, A.B. & Shyang, C.W. 2007.
Effects of organo montmorillonite on the mechanical and morphological properties
of epoxy/glass fiber composites. Polym. Int. 56(4): 512-517.
Oksman, K., Mathew, A.P., Långström, R., Nyström, B. &
Joseph, K. 2009. The influence of fibre microstructure on fibre breakage and
mechanical properties of natural fibre reinforced polypropylene. Compos.
Sci. Technol. 69(11-12): 1847-1853.
Samal, S.K., Nayak, S.K. & Mohanty, S. 2008.
Polypropylene nanocomposites: Effect of organo-modified layered silicates
on mechanical, thermal
& morphological performance. J. Thermoplast. Compos. Mater. 21(3):
243-263.
Sharma, S.K. & Nayak, S.K. 2009. Surface modified
clay/polypropylene (PP) nanocomposites: Effect on physico-mechanical, thermal
and morphological properties. Polym. Degrad. Stabil. 94(1): 132-138.
Thomason, J.L. 2002. The influence of fibre length and
concentration on the properties of glass fibre reinforced polypropylene: 5.
Injection moulded long and short fibre PP. Compos. Part A. 33(12):
1641-1652.
Thomason, J.L., Vlug, M.A., Schipper, G. & Krikor, H.
1996. Influence of fibre length and concentration on the properties of glass
fibre-reinforced polypropylene: Part 3. Strength and strain at failure. Compos.
Part A. 27(11): 1075-1084.
Vilaseca, F., Valadez-Gonzalez, A., Herrera-Franco, P.J., P
lach, M., López, J.P. & Mutjé, P. 2010. Biocomposites from abaca strands
and polypropylene. Part I: Evaluation of the tensile properties. Bioresource
Technol. 101(1): 387-395.
Wetzel, B., Haupert, F., Friedrich, K., Zhang, M.Q. &
Rong, M.Z. 2002. Impact and wear resistance of polymer nanocomposites at low
filler content. Polym. Eng. Sci. 42(9): 1919-1927.
Wetzel, B., Haupert, F. & Qiu Zhang, M. 2003. Epoxy
nanocomposites with high mechanical and tribological performance. Compos.
Sci. Technol. 63(14): 2055-2067.
Zhao, R., Huang, J., Sun, B. & Dai, G. 2001. Study of
the mechanical properties of mica-filled polypropylene-based GMT composite. J.
Appl. Polym. Sci. 82(11): 2719-2728.
*Corresponding
author; email: nmmira@um.edu.my