Sains Malaysiana 42(5)(2013): 615–623
Screening and Optimization of Biosurfactant Production by
the Hydrocarbon-Degrading Bacteria
(Penyaringan dan Pengoptimuman Biosurfaktan yang Dihasilkan oleh
Bakteria Pendegradasi-Hidrokarbon)
Ainon Hamzah*, Noramiza Sabturani
& Shahidan Radiman
School of Biosciences and Biotechnology, Faculty of Science
and Technology
Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor D.E. Malaysia
Received: 13 July 2011/Accepted: 24 October 2012
ABSTRACT
Biosurfactants are amphiphilic compounds produced by
microorganisms as secondary metabolite. The unique properties of biosurfactants
make them possible to replace or to be added to synthetic surfactants which are
mainly used in food, cosmetics and pharmaceutical industries and in
environmental applications. In this study twenty hydrocarbon-degrading bacteria
were screened for biosurfactant production. All of the bacterial isolates were
grown in mineral salt medium (MSM) with addition of 1% (v/v)
Tapis crude oil as carbon source. The presence of biosurfactant was determined
by the drop-collapse test, microplate analysis, oil spreading technique,
emulsification index (%EI24)
and surface tension measurement. Only one isolate, Pseudomonas aeruginosa UKMP14T, was found to be positive
for all the qualitative tests and reducing the surface tension of the medium to
49.5 dynes/cm with emulsification index of 25.29%. This isolate produced
biosurfactant optimally at pH9.0 and incubation temperature of 37°C.
Furthermore, P. aeruginosa UKMP14T when grown in MSM with
addition of 1% (v/v) glycerol and 1.3 g/L ammonium sulphate with C/N ratio 14:1
produced biosurfactant with percentage of surface tension reduction at 55% or
30.6 dynes/cm with %EI24 of 43%. This percentage
of surface tension reduction represents an increasing reduction in surface
tension of medium by 39% over the value before optimization. This study showed
that P. aeruginosa UKMP14T
has the ability to biodegrade hydrocarbon and concurrently produce
biosurfactant.
Keywords: Biosurfactant; hydrocarbon-degrading bacteria;
optimization; surface tension
ABSTRAK
Biosurfaktan adalah sebatian ampifilik yang
dihasilkan oleh mikroorganisma sebagai metabolit sekunder. Ciri-ciri biosurfaktan yang
unik membolehkan mereka menggantikan atau ditambahkan kepada surfaktan sintetik
yang kebanyakannya digunakan dalam industri makanan, kosmetik dan farmaseutikal
dan diaplikasi dalam sekitaran. Dalam kajian ini
sebanyak 20 pencilan bakteria-pencurai hidrokarbon disaring untuk penghasilan
biosurfaktan. Kesemua pencilan bakteria dihidupkan di
dalam medium garam mineral (MSM) yang ditambah dengan 1%
(i/i) minyak mentah Tapis sebagai sumber karbon. Kehadiran
biosurfaktan ditentukan dengan ujian titisan-runtuh, analisis mikroplat, teknik
sebaran minyak, indeks emulsifikasi (%EI24)
dan pengukuran ketegangan permukaan. Hanya satu pencilan iaitu Pseudomonas
aeruginosa UKMP14T yang memberikan hasil positif ke atas semua ujian
kualitatif dan mengurangkan ketegangan permukaan medium sehingga 49.5 dynes/cm
dengan indeks emulsifikasi 25.29%. Pencilan ini menghasilkan biosurfaktan yang
optimum pada pH9.0 dan suhu eraman 37°C. Selain itu, apabila P. aeruginosa UKMP14T
dihidupkan di dalam MSM dengan penambahan 1% (i/i)
gliserol dan 1.3 g/L ammonium sulfat dengan nisbah C/N 14:1, ia menghasilkan
biosurfaktan dengan peratus pengurangan ketegangan permukaan sebanyak 55% atau
30.6 dynes/cm dengan %EI24,
43%. Peratus pengurangan ketegangan permukaan ini mewakili
peningkatan pengurangan dalam ketegangan permukaan medium sebanyak 39% jika
dibandingkan sebelum pengoptimuman. Kajian ini
menunjukkan bahawa P.
aeruginosa UKMP14T mempunyai keupayaan untuk
biodegradasi hidrokarbon serta menghasilkan biosurfaktan.
Kata kunci: Bakteria pencurai-hidrokarbon;
biosurfaktan; ketegangan permukaan; pengoptimuman
REFERENCES
Bouchez, M., Blanchet, D.
& Vandacasteele, J.P. 1995. Degradation of polycyclic aromatic hydrocarbons by pure strains
and defined strain associations: Inhibition phenomena and cometabolism. Applied
Microbiology Biotechnology 43:156-164.
Bodour, A. & Miller-Maier, R.M. 1998.
Application of a modified drop collapse technique for surfactant quantification
and screening of biosurfactant-producing microorganisms. Journal of
Microbiological Methods 32: 273-280.
Cameotra, S.S. & Makkar, R.S. 2004. Recent applications of biosurfactants as biological and
immunological molecules. Current Opinion in Microbiology 7:
262-266.
Chen, C-Y., Baker, S.C.
& Darton, R.C. 2007. The application of a high throughput
analysis method for the screening of potential biosurfactants from natural
resources. Journal of Microbiological Methods 70: 503-510.
Chen, C-Y., Lu, B-W.,
Wei, Y-H., Chen, W-M. & Chang, J-S. 2007. Improved production of
biosurfactant with newly isolated Pseudomonas aeruginosa S2. Biotechnology
Process 23(3): 661-666.
Cooper, D.G. & Goldenberg, B.G. 1987. Surface-active agents from two Bacillus species. Applied
Environmental Microbiology 53: 224-229.
Hamzah, A., Rabu, A., Azmy,
R.F.H.R. & Yussoff, N.A. 2010. Isolation and characterization of bacteria
degrading Sumandak and South Angsi oils. Sains Malaysiana 39(2):
161-168.
Kosaric, N. 1993. Biosurfactants: Production, Properties and Application.
New York: Marcel Dekker, Inc.
Lotfabad, T.B., Sourian,
M., Roostazad, R., Najafabadi, A.R., Adelzadeh, M.R. & Noghabi, K.A. 2009. An efficient biosurfactant-producing bacterium Pseudomonas
aeruginosa MR01, isolated from oil excavation areas in south of Iran. Colloids
and Surfaces B: Biointerfaces 69: 183-193.
Morikawa, M., Hirata, Y.
& Imanaka, T. 2000. A study on the structure–function relationship of the
lipopeptide biosurfactants. Biochimica et Biophysica Acta 1488: 211-218.
Mukred, A.M., Hamid, A.A., Hamzah, A. &
Yusoff, W.W.M. 2008. Enhancement of biodegradation of crude petroleum-oil in
contaminated water by the addition of nitrogen sources. Pakistan Journal of
Biological Sciences 11(17): 2122-2127.
Nur Faizah Abu Bakar. 2010. Biodegradation study
of Tapis crude oil and condensate Terengganu by selected bacteria. MSc. Thesis,
Universiti Kebangsaan Malaysia (unpublished).
Pacwa-Plociniczak, M.,
Plaza, G.A., Piotrowska-Seget, Z. & Cameotra, S.S. 2011. Environmental applications of biosurfactants:
Recent advances. International Journal Molecular Science 12: 633-654.
Pekdemir, T., Copur, M.
& Urum, K. 2005. Emulsification of crude oil–water systems using
biosurfactants. Process Safety Environmental Protection 83(B1):
38-46.
Plaza, G.A., Zjawiony, I.
& Banat, I.M. 2006. Use of
different methods for detection of thermophilic biosurfactant-producing
bacteria from hydrocarbon-contaminated and bioremediated soils. Journals of
Petroleum Science and Engineering 50: 71-77.
Praveesh, B.V., Soniyambang, A.R., Mariappan,
C., Kavithakumari, P., Pataniswammy, M. & Lalitha, S. 2011. Biosurfactant
production by Pseudomonas sp from soil using whey as carbon source, New York
Science Journal 4(4): 99-103.
Prieto, L.M., Michelon, M.,
Burkert, J.F.M., Kalil, S.J. & Burkert, C.A.V. 2008. The production of rhamnolipid by a Pseudomonas
aeruginosa strain isolated from a southern coastal zone in Brazil. Chemosphere 71: 1781-1785.
Pornsunthorntawee, N., Arttaweeporn, N.,
Paisanjit, S., Somboonthanate, P., Abe, M., Rujiravanit, R. & Chavadej, S.
2008. Isolation and comparison of biosurfactants produced by Bacillus
subtilis PT2 and Pseudomonas aeruginosa SP4 for microbial
surfactant-enhanced oil recovery. Biochemical Engineering Journal 42:
172-179.
Silva, S.N., Farias, C.B.,
Rufino, R.D., Luna, J.M. & Sarubbo, L.A. 2010. Glycerol as substrate for the
production of biosurfactant by Pseudomonas aeruginosa UCP0992. Colloids
Surf B Biointerfaces 79(1): 174-183.
Rodrigues, L., Banat, I.M., Teixeira, J. & Oliveira, R. 2006.
Biosurfactants: Potential applications in medicine. Journal of Antimicrobial
Chemotherapy 57: 609-618.
Wei, Y-H., Lai, C-C. & Chang, J-S. 2007. Using Taguchi
experimental design methods to optimize trace element composition for enhanced
surfactin production by Bacillus subtilis ATCC 21332. Process
Biochemistry 42: 40-45.
Wei, Y-H., Cheng, C-L., Chien, C-C.
& Wan, H-M. 2008. Enhanced di-rhamnolipid production with an indigenous
isolate Pseudomonas aeruginosa J16. Process Biochemistry 43:
769-774.
Williams, K. 2009. Biosurfactants for cosmetic application:
Overcoming production challenges. MMG 445 Basic Biotechnology 5: 78-83.
Willumsen, P.A.E. & Karlson, U. 1997. Screening of
bacteria, isolated from PAH-contaminated soils, for production of
biosurfactants and bioemulsifiers. Biodegradation 7: 415-423.
Wu, J-Y., Yeh, K-L., Lu, W-B., Lin,
C-L. & Chang, J-S. 2008. Rhamnolipid production with indigenous Pseudomonas
aeruginosa EM1 isolated from oil-contaminated site. Bioresource
Technology 99: 1157-1164.
Yin, H., Qjang, J., Jia, Y., Ye, J., Peng, H., Qin, H.,
Zhang, N. & He, B. 2009. Characteristics of biosurfactant produced by Pseudomonas
aeruginosa S6 isolated from oil-containing wastewater. Process
Biochemistry 44: 302-308.
Youssef, N., Duncan, K.E. & Savage,
K.N. 2004. Comparison of
methods to detect biosurfactant production by diverse microorganisms. Journal
Microbiology Methods 56: 339-347.
Zajic, E. & Supplison, B. 1972. Emulsification and
degradation of “Bunker C” fuel oil by microorganisms. Biotechnology and
Bioengineering 14: 331-343.
Zhang, G-L., Wu, Y-T., Qian, X-P.
& Meng, Q. 2005. Biodegradation of crude oil by Pseudomonas
aeruginosa in the presence of rhamnolipid. Journal
of Zhejiang University, Science B 6B(8): 725-730.
*Corresponding
author; email: antara@ukm.my
|