Sains Malaysiana 42(5)(2013): 643–648
Formation of Porous Silicon: Mechanism of Macropores
Formation
in n-Type Si
(Pembentukan Silikon Berliang: Mekanisme Pembentukan Liang Makro
dalam Si Jenis-n)
Nurul Izni Rusli, Mastura Shafinaz Zainal
Abidin, Budi Astuti & Nihad K. Ali
Faculty
of Electrical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
Abdul Manaf Hashim*
Malaysia-Japan International Institute
of Technology (MJIIT)
Universiti Teknologi Malaysia
International Campus, Jalan Semarak 54100 Kuala Lumpur
Malaysia
Received:
7 January 2012/Accepted: 21 May 2012
ABSTRACT
We report the formation of macropores in n-Si (100) substrates for
different etching times of 20, 40 and 60 min at a constant current density of
25 mA/cm2 under front-side illumination in HF:ethanol (1:4) solution. After etching for 20 min, four-branch-shaped pores of various
sizes were observed at discrete locations. Etching time of 40 min led to the
formation of highly connected four-branch-shaped pores as the branches of
adjacent pores appeared to connect to each other. As the etching time was
increased further to 60 min, the density of interconnected branches increased
remarkably. The macropore formation process occurred in three consecutive
phases. The current burst model was used to discuss this process. Formation of
four-branch-shaped pores at random locations were observed because current
bursts are more likely to nucleate where other current bursts took place
initially.
Keywords: Electrochemical etching; etching time; illumination;
porous silicon
ABSTRAK
Kami melaporkan pembentukan liang makro dalam substrat Si(100)
jenis-n untuk masa punaran yang berbeza iaitu 20, 40 dan 60 min pada ketumpatan
arus malar sebanyak 25 mA/cm2 di bawah pencahayaan arah
depan dalam larutan HF:etanol (1:4). Selepas punaran selama 20 min,
liang-liang bercabang-empat pelbagai saiz dapat diperhatikan pada lokasi
tertentu. Masa punaran 40 min menyebabkan pembentukan liang-liang
bercabang-empat yang bersambungan kerana cabang pada liang-liang bersebelahan
telah muncul untuk menyambung antara satu sama lain.
Apabila masa punaran dilanjutkan kepada 60 min, ketumpatan cabang-cabang yang
saling bersambungan meningkat dengan ketara. Pembentukan liang makro ini berlaku dalam tiga fasa berturut-turut. Model limpahaan arus telah
digunakan untuk membincangkan proses ini. Pembentukan liang-liang bercabang-empat pada lokasi rawak telah diperhatikan kerana limpahan arus lebih
cenderung untuk terbentuk pada tempat limpahan arus yang telah berlaku
sebelumnya.
Kata kunci: Masa punaran; pencahayaan; punaran
elektrokimia; silikon berliang
REFERENCES
Bao, X.Q., Jiao, J.W., Wang, Y.L., Kyoung, W.N. & Choib, H.
2007. Macropore formation without illumination on low doped n-type silicon. Journal
of The Electrochemical Society 154(3): D175-D181.
Carstensen, J., Christophersen, M. & Foll,
H. 2000. Pore formation mechanisms for the Si-HF system. Materials Science
and Engineering B 69-70: 23-28.
Föll, H., Christophersen,
M., Carstensen, J. & Hasse, G. 2002. Formation and application of porous silicon. Materials Science and Engineering – R 39(4): 93-141.
Galun, E., Reuben, C.,
Matlis, S., Tenne, R. & Levy-Clement, C. 1995. Morphology of n-type macroporous silicon:
Doping density dependence. Journal of Physical Chemistry 99: 4132-4140.
Ge, J., Yin, W.J., Ma,
L.L., Obbard, E., Ding, X.M. & Hou, X.Y. 2007. Systematic study on pulse
parameters in fabricating porous silicon-layered structures by pulse
electrochemical etching. Semiconductor Science and Technology 22:
925-928.
Granitzer, P. & Rumpf, K. 2010. Porous silicon - a versatile host material. Materials 3:
943-998.
Guozheng W., Chen L., Qin X., Wang J., Wang Y.,
Fu S., & Duanmu Q. 2010. Influence of etching current density on the
morphology of macroporous silicon arrays by photo-electrochemical etching. Journal
of Semiconductors 31(7): 074011-1-074011-4.
Kumar, P. & Huber, P. 2007. Effect of etching parameter on pore size and porosity of
electrochemically formed nanoporous silicon. Journal of Nanomaterials 2007: 1-4.
Lehmann, V. 1996. Porous silicon formation and
other photoelectrochemical effects at silicon electrodes anodized in
hydrofluoric acid. Applied Surface Science 106: 402-405.
Lehmann, V. & Gösele, U. 1991. Porous
silicon formation: Aquantum wire effect. Applied Physics Letters 58:
856-858.
Lehmann, V., Stengl, R.
& Luigart, A. 2000. On the
morphology and the electrochemical formation mechanism of mesoporous silicon. Materials
Science and Engineering B 69-70: 11-22.
Miranda, C.R.B., Baldan,
M.R., Beloto, A.F. & Ferreira, N.G. 2008. Morphological and optical characteristics of
porous silicon produced by anodization process in HF-acetonitrile and
HF-ethanol solutions. Journal of the Brazilian Chemical Society 19(4):
769-774.
Ouyang, H., Christophersen, M. & Fauchet,
P.M. 2005. Enhanced control of porous silicon morphology from macropore to
mesopore formation. Physica Status Solidi (a) 202(8): 1396-1401.
Searson, P.C., Macaulay, J.M. & Ross. F.M.
1992. Pore morphology and the mechanism of pore formation in n-type silicon. Journal
of Applied Physics 72: 253-258.
Smith, R.L., Chuang, S-F. & Collins, S.D.
1990. Porous silicon morphologies and formation mechanism. Sensors and Actuators A21-A23: 825-829.
Smith, R.L. & Collins, S.D. 1992. Porous silicon formation mechanisms. Journal of Applied
Physics 71: R1-R22.
Tao, Y. & Esashi, M.
2005. Macroporous
silicon-based deep anisotropic etching. Journal of Micromechanics and
Microengineering 15: 764-770.
Theunissen, M.J.J. 1972. Etch channel formation during
anodic dissolution of n-type silicon in aqueous hydrofluoric acid. Journal
of the Electrochemical Society: Solid State Science and Technology 119:
351-360.
Thonissen, M., Berger,
M.G., Arens-Fischer, R., Gluck, O., Krtiger, M. & Liath, H. 1996. Illumination-assisted
formation of porous silicon. Thin Solid Films 276: 21-24.
Zhang, X.G. 1991. Mechanism of pore formation on
n-type silicon. Journal of Electrochemical Society 138:
3750-3756.
*Corresponding
author; email: manaf@fke.utm.my
|