Sains Malaysiana 42(5)(2013): 661–666

 

Simulations of Hirschsprung’s Disease Using Fractional Differential Equations

(Simulasi Penyakit Hirschsprung Menggunakan Persamaan Pembezaan Pecahan)

 

 

F.A. Abdullah*

School of Mathematical Sciences, Universiti Sains Malaysia

11800 USM, Pulau Pinang, Malaysia

 

Received: 20 July 2011/Accepted: 20 October 2012

 

 

ABSTRACT

In this paper, we examined a model of cell invasion focusing on the wavefront of the neural crest (NC) cells in the case of Hirschsprung’s disease (HSCR). Hirschsprung’s disease (HSCR) is a congenital defect of intestinal ganglion cells and causes patients to have disorders in peristalsis. This simulation model was performed using the fractional differential equations (FDEs) based upon two basic cell functions. Here, we simulated the mathematical model in a one-dimensional setting, based on the fractional trapezoidal numerical scheme and the results showed an interesting outcome for the mobility of the cellular processes under crowded environments.

 

Keywords: Fractional differential equation; Hirschsprung disease; simulation

 

ABSTRAK

Dalam penyelidikan ini, kami mengkaji model berkaitan penyerangan sel dan fokus kajian adalah pada gelombang penyerangan sel neural dalam penyakit Hirschsprung (HSCR). Penyakit Hirschsprung (HSCR) adalah penyakit yang berkaitan dengan kecacatan semasa lahir atau sebelum lahir dan berpunca daripada sel ganglion sehingga menyebabkan proses periltalsis menjadi tidak normal. Model simulasi adalah berdasarkan persamaan pembezaan pecahan (FDES) ke atas dua sel asas. Kajian ini mensimulasikan model matematik dalam satu dimensi berpandukan kepada kaedah berangka trapezoid pecahan. Hasil keputusan daripada simulasi ini menunjukkan wujud hasil yang menarik daripada pergerakan sel dalam keadaan bersesak.

 

Kata kunci: Penyakit Hirschsprung; persamaan pembezaan pecahan; simulasi

REFERENCES

 

Abdullah, F.A. 2009. Numerical methods for fractional differential equations and their applications to system biology. PhD Thesis, University of Queensland, Brisbane, Australia (unpublished).

Diethelm, K., Ford, N.J. & Freed, A.D. 2002. A Predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dynam. 29: 3-22.

Diethelm, K., Ford, N.J. & Freed, A.D. 2004. Detailed error analysis for a fractional Adams method. Numerical Algorithms 36: 31-52.

Diethelm, K., Ford, N.J., Freed, A.D. & Luchko, Y. 2005. Algorithms for the fractional calculus: A selection of numerical methods. Comput. Methods Appl. Mech. Engrg. 194: 743-773.

Ferreti, P., Copp, A. Tickle, C. & Moore, G. 2006. Embryos, Genes and Birth Defects. 2nd ed. UK: John Wiley and Sons.

Ford, N.J. & Simpson, C. 2001. Numerical approaches to the solution of some fractional differential equations. Proceedings of HERCMA 100-107

Landman, K.A., Simpson, M.J. & Newgreen, D.F. 2007.Mathematical and experimental insights into the development of enteric nervous system and Hirschsprung’s disease.Develop. Growth Differ. 49: 277-286.

Landman, K.A., Simpson, M.J., Slater, J.L. & Newgreen, D.F. 2005. Diffusive and chemotactic cellular migration: Smooth and discontinous travelling wave solutions. SIAM J. Appl. Math. 65(4): 1420-1442.

Oldham, K.B. & Spanier, J. 1974. The Fractional Calculus, 111, Mathematics in Science and Engineering. New York: Academic Press.

Passarge, E. 2002. Dissecting Hirschsprung disease. Nat. Genet. 31: 11-12.

Simpson, M.J., Landman, K.A., Hughes, B.D. & Newgreen, D.F. 2006. Looking inside an invasion wave of cells using continuum models: Proliferation is the key. J. Theor. Biol. 243: 343-360.

Simpson, M.J., Zhang, D.C., Mariani, M., Landman, K.A. & Newgreen, D.F. 2007. Cell proliferation drives neural crest cell invasion of the intestine. Dev. Biol. 302: 553-568.

Skaba, R. 2007. Historic milestones of Hirschsprung’s disease (commemorating the 90th anniversary of Professor Harald Hirschsprung’s death). J. Pediatr. Surg. 42: 249-251.

Yntema, C.L. & Hammond, W.S. 1954. The origin of intrinsic autonomic ganglia of trunk viscera in the chick embryo. J. Comp. Neurol. 101: 515-541.

Yuste, S.B., Acedo, L. & Lindenberg, K. 2004. Reaction front in an A+B→C reaction- subdiffusion process. Phys. Rev. E 69: 036126.

Yuste, S.B. & Lindenberg, K. 2001. Subdiffusion limited A+A reactions. Phys. Rev. Lett. 87: 118301.

Yuste, S.B. & Lindenberg, K. 2002. Subdiffusion-limited reactions. Chem. Phys. 284: 169-180.

 

 

*Corresponding author; email: farahaini@usm.my

 

previous