Sains Malaysiana 42(5)(2013): 673 –683
A Non-parametric Survival Estimate After Elimination
of a Cause of Failure
(Penganggaran Kemandirian Tak-Berparameter Selepas Penghapusan
Punca Risiko)
Fang Yen Yen* & Suraiya Kassim
School
of Mathematical Sciences, Universiti Sains Malaysia
11800
USM, Penang, Malaysia
Received:
9 May 2012/Accepted: 17 September 2012
ABSTRACT
In competing risks analysis, the primary interest of researchers
is the estimation of the net survival probability (NSP) if a cause of
failure could be eliminated from a population. The Kaplan-Meier product-limit
estimator under the assumption that the eliminated risk is non-informative to
the other remaining risks, has been widely used in the
estimation of the NSP. The assumption implies that the hazard of the remaining risks before and after the elimination are equal and it could be biased. This paper addressed this possible bias by
proposing a non-parametric multistate approach that accounts for an informative
eliminated risk in the estimation procedure, whereby the hazard probabilities
of the remaining risks before and after the elimination of a risk are not
assumed to be equal. When a non-informative eliminated risk was assumed, it was
shown that the proposed multistate estimator reduces to the Kaplan-Meier
estimator. For illustration purposes, the proposed procedure was implemented on
a published dataset and the change in hazard after elimination of a cause is
investigated. Comparing the results to those obtained from using the
Kaplan-Meier method, it was found that in the presence of (both constant and
non-constant) informative eliminated risk, the proposed multistate approach was
more sensitive and flexible.
Keywords: Competing risks; Kaplan-Meier estimator; latent-failure-time
approach; multistate approach; net survival probability
ABSTRAK
Dalam analisis risiko bersaing, minat utama penyelidik ialah
penganggaran kebarangkalian kemandirian bersih (NSP) sekiranya punca
risiko boleh dihapuskan daripada satu populasi. Penganggar
had-hasil darab Kaplan-Meier, dengan andaian bahawa punca risiko yang
dihapuskan adalah tidak bermaklumat kepada punca risiko yang lain, telah
digunakan secara meluas dalam penganggaran NSP. Andaian ini
membawa implikasi bahawa kadaran bahaya baki risiko sebelum dan selepas
penghapusan adalah sama dan ia mungkin tak saksama.
Kertas ini menangani kemungkinan ketaksamaan ini dengan mencadangkan suatu
pendekatan multi-keadaan tak-berparameter yang mengambil kira risiko dihapus
yang bermaklumat dalam prosedur penganggaran, dengan kebarangkalian bahaya bagi
risiko lain sebelum dan selepas penghapusan suatu risiko tidak diandaikan sama. Apabila risiko dihapus diandaikan tak bermaklumat,
ditunjukkan bahawa penganggar multi-keadaan yang dicadangkan menurun kepada
penganggar Kaplan-Meier. Bagi tujuan illustrasi, prosedur yang dicadangkan
dilaksanakan pada satu set data yang telah diterbitkan dan perubahan kadar bahaya selepas penghapusan suatu risiko disiasat.
Membandingkan keputusan yang diperoleh dengan keputusan daripada kaedah
Kaplan-Meier, didapati bahawa dengan kehadiran risiko dihapus yang bermaklumat
(malar dan bukan malar), pendekatan multi-keadaan yang dicadangkan adalah lebih
peka dan lebih lentur.
Kata kunci: Kebarangkalian kemandirian bersih; pendekatan
masa-risiko-terpendam; pendekatan multi-keadaan; penganggar Kaplan-Meier;
risiko bersaing
REFERENCES
Aalen, O., Borgan, Ø. & Gjessing, H.K. 2008. Survival and Event History Analysis: A Process Point of View. New York:
Springer.
Agrawal, V., Marinescu, V.,
Agarwal, M. & McCullough, P.A. 2009. Cardiovascular implications of proteinuria: An indicator of
chronic kidney disease. Nat. Rev. Cardiol. 6(4): 301-311.
Andersen, P.K., Abildstrom, S.Z. & Rosthoj,
S. 2002. Competing risks as a multi-state model. Stat.
Methods Med. Res. 11(2): 203-215.
Andersen, P.K., Borgan, O.,
Gill, R.D. & Keiding, N. 1993. Statistical Models Based on Counting Processes. New York:
Springer Verlag.
Chiang, C.L. 1968. Competing Risks:
Introduction to Stochastic Processes in Biostatistics. New York: John Wiley
& Sons.
Cornfield, J. 1957. The estimation of the
probability of developing a disease in the presence of competing risks. Am.
J. Public Health Nations Health 47(5): 601-607.
Crowder, M. 1994. Identifiability crises in competing
risks. International Statistical Review 62(3): 379-391.
Crowder, M. 2001. Classical Competing Risks. Boca Raton: Chapman & Hall/CRC.
David, H.A. & Moeschberger, M.L. 1978. The Theory of Competing Risks. London: Griffin.
Davis, T.P. & Lawrance, A.J. 1989. The
likelihood for competing risk survival analysis. Scand.
J. Statist. 16: 23-28.
Dhar, M., Lahiri, S.,
Vijayasimha, R., Ashok, N. & Murthy, N. 2008. Study of social loss or gain from a particular
cause: Scope for the developing countries - A review with reference to cancer. Asian
Pacific Journal of Cancer Prevention 9(4): 797-804.
Dietz, K. & Heesterbeek, J.A.P. 2002. Daniel
Bernoulli’s epidemiological model revisited. Mathematical Biosciences 180(1-2):
1-21.
Elandt-Johnson, R.C. &
Johnson, N.L. 1980. Survival
Models and Data Analysis. New York: John Wiley & Sons.
Farley, T.M., Ali, M.M.
& Slaymaker, E. 2001. Competing approaches to analysis of failure times with competing
risks. Stat. Med. 20(23): 3601-3610.
Gail, M. 1975. A review and critique of some
models used in competing risk analysis. Biometrics 31(1): 209-222.
Gail, M. 1982. Competing risks. In Encyclopedia of Statistical
Sciences edited by Kotz S. & Johnson, N.L. New York: Wiley.
Gooley,
T.A., Leisenring, W., Crowley, J. & Storer, B.E. 1999. Estimation of
failure probabilities in the presence of competing risks: New representations
of old estimators. Stat. Med. 18(6): 695-706.
Hoel,
D.G. 1972. A representation of mortality data by competing
risks. Biometrics 28(2): 475-488.
Hoem,
J.M. 1969. Purged and partial markov chains. Scand. Aktuarietidskrift (52):
147-155.
Hougaard,
P. 2000. Competing risks model. Analysis of Multivariate
Survival Data. New York: Springer.
Islam,
M.A. 1994. An alternative to the product limit method: The multistate approach. Journal of the Royal Statistical Society. Series D (The Statistician) 43(2): 237-245.
Kalbfleisch,
J.D. & Prentice, R.L. 2002. The Statistical Analysis
of Failure Time Data. 2nd ed. New
York: Wiley.
Kaplan,
E.L. & Meier, P. 1958. Nonparametric estimation from
incomplete observations. Journal of the American Statistical
Association 53(282): 457-481.
Klein,
J.P. 2010. Competing risks. Wiley Interdisciplinary Reviews: Computational
Statistics 2(3): 333-339.
Klein,
J.P. & Moeschberger, M.L. 1987. Independent or dependent competing risks:
Does it make a difference. Communications in Statistics - Simulation and
Computation 16(2): 507-533.
Lawless,
J.F. 2003. Statistical Models and Methods for Lifetime Data. 2nd ed. New York: John Wiley.
Ma, Z.S. & Krings, A.W. 2008. Competing risks analysis of reliability, survivability, and prognostics and
health management (PHM). Proc. IEEE-AIAA AeroSpace Conf., March 1-8, 2008.
Big Sky, MT.: 20.
Mathew, A. & Pandey, M. 2002. Attributing death to cancer: Cause-specific survival estimation. Journal of
Postgraduate Medicine 48(4): 322-326.
Prentice, R.L., Kalbfleisch, J.D., Peterson, A.V. Jr.,
Flournoy, N., Farewell, V.T. & Breslow, N.E. 1978. The analysis of failure times in the presence of competing risks. Biometrics 34(4): 541-554.
Putter, H., Fiocco, M. & Geskus, R.B. 2007. Tutorial in biostatistics: Competing risks and multi-state models. Stat.
Med. 26(11): 2389-2430.
Slud,
E. & Byar, D. 1988. How dependent causes of death can make risk factors
appear protective. Biometrics 44(1): 265-269.
Tsiatis,
A.A. 1975. A nonidentifiability aspect of the problem of
competing risks. Proc. Natl. Acad. Sci. USA 72(1): 20-22.
Tsiatis,
A.A. 2005. Competing risks. In Encyclopedia of
Biostatistics. 2nd ed. edited by Armitage, P. & Colton,
T. Chichester, West Sussex: John Wiley & Son.
*Corresponding
author; email: fangyenyen@hotmail.com
|