Sains Malaysiana 42(6)(2013): 725–735

 

Inhibition of GSK3 Attenuates the Intracellular Multiplication of Burkholderia pseudomallei and Modulates the Inflammatory Response in Infected Macrophages and A549

Epithelial Lung Cells

(Perencatan GSK3 Mengurangkan Penggandaan B. pseudomallei Intrasel dan Memodulasi Respons

Inflamasi dalam Makrofaj dan Sel Peparu Epitelium A549 Terinfeksi)

 

Pramila Maniam, Aishah Farliani Shirat, Hasidah Mohd Sidek, Ghazally Ismail & Noor Embi*

School of Biosciences and Biotechnology, Faculty of Science and Technology

Universiti Kebangsaan Malaysia, 43600 UKM  Bangi, Selangor D.E. Malaysia

 

Received: 13 June 2012/Accepted: 18 September 2012

 

ABSTRACT

Burkholderia pseudomallei, the causative agent of melioidosis, is an intracellular pathogen capable of invading and multiplying in both phagocytic and non-phagocytic cells. Infection results in an inflammatory response involving production of both pro- and anti-inflammatory cytokines. The cellular mechanism regulating this response, believed to play an important role in the pathogenesis of meliodoisis, is not fully understood. In recent years, glycogen synthase kinase-3 (GSK3) has been shown to assume a pivotal role in regulating production of these cytokines. Bacterial infection of host cells activates Toll-like receptors (TLRs) and results in the phosphorylation of GSK3β through activation of the phosphoinositide 3-kinase (PI3K) pathway. In this study, we investigated the effects of GSK3 inhibition in regulating B. pseudomallei-induced inflammatory response in macrophages and A549 epithelial lung cells. Our results showed that infection of cells with B. pseudomallei resulted in the increase of anti-inflammatory cytokine, IL-10 and pro-inflammatory cytokine, TNF-α. Pre-treatment of infected cells with GSK3 inhibitors caused further increase in the level of IL-10 but a significant decrease in TNF-α. These changes corresponded with the detection of phosphorylated GSK3β in infected cells treated with LiCl; suggesting that modulation of inflammatory response in B. pseudomallei infection involves phosphorylation of GSK3β (Ser 9). This could explain our observations from the invasion assays that pre-treatment of B. pseudomallei-infected cells with GSK3 inhibitors resulted in decreased intracellular replication of bacteria within macrophages and A549 epithelial lung cells. In summary, our results demonstrate a regulatory function of GSK3 in the modulation of cytokine levels during B. pseudomallei infection.

 

Keywords: Burkholderia pseudomallei; glycogen synthase kinase-3; inflammation; macrophage; melioidosis

 

ABSTRAK

Burkholderia pseudomallei, patogen penyebab melioidosis merupakan bakteria intrasel yang mampu menginfeksi dan mengganda dalam sel fagosit serta sel bukan fagosit. Infeksi mengakibatkan respons inflamasi yang melibatkan penghasilan sitokin pro- dan anti-inflamasi. Mekanisme pengawalan respons tersebut yang dipercayai memainkan peranan penting dalam patogenesis melioidosis masih belum difahami sepenuhnya. Glikogen sintase kinase-3 (GSK3) kini diketahui mempunyai peranan utama dalam pengawalan penghasilan sitokin pro- dan anti-inflamasi. Infeksi sel hos oleh bakteria mengaktifkan reseptor Toll-like (TLR) dan mencetuskan pemfosfatan GSK3β melalui pengaktifan tapak jalan fosfoinositid-3-kinase (PI3K). Kami mengkaji kesan perencatan GSK3 dalam pengawalan respons inflamasi yang diaruh oleh B. pseudomallei dalam makrofaj dan sel epitelium peparu A549. Hasil yang kami peroleh menunjukkan peningkatan penghasilan sitokin anti-inflamasi, IL-10 dan sitokin pro-inflamasi, TNF-α dalam sel diinfeksi B. pseudomallei. Pra-perlakuan sel terinfeksi dengan perencat GSK3 menyebabkan aras sitokin IL-10 meningkat dengan lebih tinggi tetapi penghasilan TNF-α berkurangan secara signifikan. Perubahan aras sitokin IL-10 dan TNF-α berpadanan dengan pengesanan GSK3β terfosfat dalam sel diinfeksi yang diberi perlakuan LiCl. Ini mencadangkan bahawa modulasi respons inflamasi semasa infeksi B. pseudomallei melibatkan pemfosfatan GSK3β (Ser 9). Ini juga menjelaskan cerapan daripada asai penaklukan yang menunjukkan pra-perlakuan perencat GSK3 menyebabkan pengurangan penggandaan bakteria intrasel dalam makrofaj dan sel epitelium peparu A549 yang diinfeksi B. pseudomallei. Secara keseluruhan hasil kami menunjukkan GSK3 terlibat dalam modulasi aras sitokin semasa sel diinfeksi B. pseudomallei.

 

Kata kunci: Burkholderia pseudomallei; glikogen sintase kinase-3; inflamasi; makrofaj; melioidosis

REFERENCES

Arjcharoen, S., Wikraiphat, C., Pudla, M., Limposuwan, K., Woods, D., Sirisinha, S. & Utaisincharoen, P. 2007. Fate of a Burkholderia pseudomallei lipopolysaccharide mutant in the mouse macrophage cell line RAW 264.7: Possible role for the O-antigenic polysaccharide moiety of lipopolysaccharide in internalization and intracellular survival. Infection and Immunity 75(9): 4298-4304.

Brunda, M.J. 1994. Interleukin-12. Journal of Leukocyte Biology 55(2): 280-288.

Chan, M.M.P., Cheung, B.K.W., Li, J.C.B., Chan, L.L.Y. & Lau, A.S.Y. 2009. A role for glycogen synthase kinase-3 in antagonizing mycobacterial immune evasion by negatively regulating IL-10 induction. Journal of Leukocyte Biology 86(2): 283-291.

Charpentier, X., Gabay, J.E., Reyes, M., Zhu, J.W., Weiss, A. & Shuman, H.A. 2009. Chemical genetics reveals bacterial and host cell functions critical for type IV effector translocation by Legionella pneumophila. PLoS Pathogens 5(7): e1000501.

Cheng, Y.L., Wang, C.Y., Huang, W.C., Tsai, C.C., Chen, C.L., Shen, C.F., Chi, C.Y. & Lin, C.F. 2009. Staphylococcus aureus induces microglial inflammation via a glycogen synthase kinase 3 {beta}-regulated pathway. Infection and Immunity 77(9): 4002-4008.

Coant, N., Simon-Rudler, M., Gustot, T., Fasseu, M., Gandoura, S., Ragot, K., Abdel-Razek, W., Thabut, D., Lettéron, P. & Ogier-Denis, E. 2011. Glycogen synthase kinase-3 involvement in the excessive proinflammatory response to LPS in patients with decompensated cirrhosis. Journal of Hepatology 55: 784-793.

Cohen, P. & Frame, S. 2001. The renaissance of GSK3. Nature Reviews Molecular Cell Biology 2(10): 769-776.

Cole, L.E., Santiago, A., Barry, E., Kang, T.J., Shirey, K.A., Roberts, Z.J., Elkins, K.L., Cross, A.S. & Vogel, S.N. 2008. Macrophage proinflammatory response to Francisella tularensis live vaccine strain requires coordination of multiple signaling pathways. The Journal of Immunology 180(10): 6885-6891.

Dalmas, E., Tordjman, J., Guerre-Millo, M. & Clément, K. 2012. Macrophages and Inflammation. In Adipose Tissue Biology, edited by Symonds, M. E., New York:  Springer, pp. 167-193.

Duan, Y., Liao, A.P., Kuppireddi, S., Ye, Z., Ciancio, M.J. & Sun, J. 2007. β-Catenin activity negatively regulates bacteria-induced inflammation. Laboratory Investigation 87(6): 613-624.

Dugo, L., Abdelrahman, M., Murch, O., Mazzon, E., Cuzzocrea, S. & Thiemermann, C. 2006. Glycogen synthase kinase-3 [beta] inhibitors protect against the organ injury and dysfunction caused by hemorrhage and resuscitation Shock 25(5): 485-491.

Duronio, V. 2008. The life of a cell: Apoptosis regulation by the PI3K/PKB pathway. Biochemical Journal 415: 333-344.

Elsinghorst, E.A. 1994. Measurement of invasion by gentamicin resistance. Methods in Enzymology 236: 405-420.

Elson, G., Dunn-Siegrist, I., Daubeuf, B. & Pugin, J. 2007. Contribution of Toll-like receptors to the innate immune response to Gram-negative and Gram-positive bacteria. Blood 109(4): 1574-1583.

Embi, N., Rylatt, D.B. & Cohen, P. 1980. Glycogen synthase kinase-3 from rabbit skeletal muscle. European Journal of Biochemistry 107(2): 519-527.

Fukao, T., Yamada, T., Tanabe, M., Terauchi, Y., Ota, T., Takayama, T., Asano, T., Takeuchi, T., Kadowaki, T. & Hata, J. 2002. Selective loss of gastrointestinal mast cells and impaired immunity in PI3K-deficient mice. Nature Immunology 3(3): 295-304.

Gong, L., Cullinane, M., Treerat, P., Ramm, G., Prescott, M., Adler, B., Boyce, J.D. & Devenish, R.J. 2011. The Burkholderia pseudomallei type III secretion system and BopA are required for evasion of LC3-associated phagocytosis. PLoS One 6(3): e17852.

Hii, C.S., Sun, G.W., Goh, J.W.K., Lu, J., Stevens, M.P. & Gan, Y.H. 2008. Interleukin-8 induction by Burkholderia pseudomallei can occur without Toll-like receptor signaling but requires a functional type III secretion system. Journal of Infectious Diseases 197(11): 1537-1547.

Ho, M., Schollaardt, T., Smith, M.D., Perry, M.B., Brett, P.J., Chaowagul, W. & Bryan, L.E. 1997. Specificity and functional activity of anti-Burkholderia pseudomallei polysaccharide antibodies. Infection and Immunity 65(9): 3648-3653.

Ireton, K., Payrastre, B., Chap, H., Ogawa, W., Sakaue, H., Kasuga, M. & Cossart, P. 1996. A role for phosphoinositide 3-kinase in bacterial invasion. Science 274(5288): 780-782.

Ismail, G., M. Noor Embi, Omar, O. & Razak, N. 1987. Toxigenic properties of Pseudomonas pseudomallei extracellular products. Tropical Biomedicine 4: 101-110.

Ismail, G., Razak, N., Mohamed, R., Embi, N. & Omar, O. 1988. Resistance of Pseudomonas pseudomallei to normal human serum bactericidal action. Microbiology and Immunology 32(7): 645-652.

Jope, R.S., Yuskaitis, C.J. & Beurel, E. 2007. Glycogen synthase kinase-3 (GSK3): Inflammation, diseases, and therapeutics. Neurochemical Research 32(4): 577-595.

Kespichayawattana, W., Intachote, P., Utaisincharoen, P. & Sirisinha, S. 2004. Virulent Burkholderia pseudomallei is more efficient than avirulent Burkholderia thailandensis in invasion of and adherence to culture human epithelial cells. Microbial Pathogenesis 36: 287-292.

Krauß, M. & Haucke, V. 2007. Phosphoinositide-metabolizing enzymes at the interface between membrane traffic and cell signalling. EMBO Reports 8(3): 241-246.

Kwok, T., Zabler, D., Urman, S., Rohde, M., Hartig, R., Wessler, S., Misselwitz, R., Berger, J., Sewald, N. & König, W. 2007. Helicobacter exploits integrin for type IV secretion and kinase activation. Nature 449(7164): 862-866.

Lindmo, K. & Stenmark, H. 2006. Regulation of membrane traffic by phosphoinositide 3-kinases. Journal of Cell Science 119(4): 605-614.

Matsuura, M., Kawahara, K., Ezaki, T. & Nakano, M. 1996. Biological activities of lipopolysaccharide of Burkholderia (Pseudomonas) pseudomallei. FEMS Microbiology Letters 137(1): 79-83.

Miettinen, M., Matikainen, S., Vuopio-Varkila, J., Pirhonen, J., Varkila, K., Kurimoto, M. & Julkunen, I. 1998. Lactobacilli and streptococci induce interleukin-12 (IL-12), IL-18, and gamma interferon production in human peripheral blood mononuclear cells. Infection and Immunity 66(12): 6058-6062.

Mohamed, R., Nathan, S., Embi, N., Razak, N. & Ismail, G. 1989. Inhibition of macromolecular synthesis in cultured macrophages by Pseudomonas pseudomallei exotoxin. Microbiology and Immunology 33(10): 811-820.

Morris, S.C., Madden, K.B., Adamovicz, J.J., Gause, W.C., Hubbard, B.R., Gately, M.K. & Finkelman, F.D. 1994. Effects of IL-12 on in vivo cytokine gene expression and Ig isotype selection. The Journal of Immunology 152(3): 1047-1056.

Novem, V., Shui, G., Wang, D., Bendt, A.K., Sim, S.H., Liu, Y., Thong, T.W., Sivalingam, S.P., Ooi, E.E. & Wenk, M.R. 2009. Structural and biological diversity of lipopolysaccharides from Burkholderia pseudomallei and Burkholderia thailandensis. Clinical and Vaccine Immunology 16(10): 1420-1428.

Ohtani, M., Nagai, S., Kondo, S., Mizuno, S., Nakamura, K., Tanabe, M., Takeuchi, T., Matsuda, S. & Koyasu, S. 2008. Mammalian target of rapamycin and glycogen synthase kinase 3 differentially regulate lipopolysaccharide-induced interleukin-12 production in dendritic cells. Blood 112(3): 635-643.

Pfeffer, K. 2003. Biological functions of tumor necrosis factor cytokines and their receptors. Cytokine & Growth Factor Reviews 14(3-4): 185-191.

Phewkliang, A., Wongratanacheewin, S. & Chareonsudjai, S. 2010. Role of Burkholderia pseudomallei in the invasion, replication and induction of apoptosis in human epithelial cell lines. Southeast Asian Journal of Tropica Medicine in Public Health 41(5): 1164-1176.

Razak, N. & Ismail, G. 1982. Interaction of human polymorphonuclear leukocytes with Pseudomonas pseudomallei. Journal of General and Applied Microbiology 28(6): 509-518.

Sauvonnet, N., Lambermont, I., Bruggen, P. & Cornelis, G.R. 2002. YopH prevents monocyte chemoattractant protein 1 expression in macrophages and T-cell proliferation through inactivation of the phosphatidylinositoI 3-kinase pathway. Molecular Microbiology 45(3): 805-815.

Tachado, S.D., Samrakandi, M.M. & Cirillo, J.D. 2008. Non-opsonic phagocytosis of Legionella pneumophila by macrophages is mediated by phosphatidylinositol 3-kinase. PLoS One 3(10): e3324.

Toker, A. & Cantley, L.C. 1997. Signalling through the lipid products of phosphoinositide-3-OH kinase. Nature 387(6634): 673-676.

Tracey, M. & Cerami, A. 1994. Tumor necrosis factor: A pleiotropic cytokine and therapuetic target. Annual Review of Medicine 45(1): 491-503.

Utaisincharoen, P., Arjcharoen, S., Lengwehasitit, I., Limposuwan, K. & Sirisinha, S. 2004. Burkholderia pseudomallei stimulates low interleukin-8 production in human lung epithelial cell line A549. Clinical & Experimental Immunology 138: 61-65.

Valvano, M.A., Keith, K.E. & Cardona, S.T. 2005. Survival and persistence of opportunistic Burkholderia species in host cells. Current Opinion in Microbiology 8(1): 99-105.

Wand, M., Muller, C., Titball, R. & Michell, S. 2011. Macrophage and Galleria mellonella infection models reflect the virulence of naturally occurring isolates of B. pseudomallei, B. thailandensis and B. oklahomensis. BMC Microbiology 11(1): 11.

Wang, H., Brown, J. & Martin, M. 2010. Glycogen synthase kinase 3: A point of convergence for the host inflammatory response. Cytokine 53(2): 130-140.

Weber, S.S., Ragaz, C. & Hilbi, H. 2009. Pathogen trafficking pathways and host phosphoinositide metabolism. Molecular Microbiology 71(6): 1341-1352.

West, T.E., Ernst, R., Jansson-Hutson, M. & Skerrett, S. 2008. Activation of Toll-like receptors by Burkholderia pseudomallei. BMC Immunology 9(1): 46.

White, N. 2003. Melioidosis. The Lancet 361(9370): 1715-1722.

Wiersinga, W.J., Van der Poll, T., White, N.J., Day, N.P. & Peacock, S.J. 2006. Melioidosis: Insights into the pathogenicity of Burkholderia pseudomallei. Nature Reviews Microbiology 4(4): 272-282.

Wiersinga, W.J., Wieland, C.W., Dessing, M.C., Chantratita, N., Cheng, A.C., Limmathurotsakul, D., Chierakul, W., Leendertse, M., Florquin, S. & De Vos, A.F. 2007. Toll-like receptor 2 impairs host defense in gram-negative sepsis caused by Burkholderia pseudomallei (Melioidosis). PLoS Medicine 4(7): e248.

Zhang, P., Katz, J. & Michalek, S.M. 2009. Glycogen synthase kinase-3 [beta](GSK3 [beta]) inhibition suppresses the inflammatory response to Francisella infection and protects against tularemia in mice. Molecular Immunology 46(4): 677-687.

 

 

*Corresponding author; email: noormb@ukm.my

 

 

previous