Sains Malaysiana 42(6)(2013): 773–781

 

Potential Alkali-Reactivity of Granite Aggregates in the Bukit Lagong Area, Selangor,

Peninsular Malaysia

(Potensi Tindak Balas Alkali Batuan Agregat Granit di Kawasan Bukit Lagong, Selangor, Semenanjung Malaysia)

 

Ng Tham Fatt*, John K. Raj & Azman A. Ghani

Department of Geology, University of Malaya, 50603 Kuala Lumpur, Malaysia

 

Received: 21 November 2011/Accepted: 16 December 2012

 

 

ABSTRACT

The Bukit Lagong area is the most important aggregate supply centre in Selangor. Geological studies were carried out in four quarries in the Bukit Lagong area and samples were subjected to petrographic examination and accelerated expansion tests to assess the potential alkali-aggregate reactivity of granite aggregates. The granitic rocks comprise mainly of coarse grained megacrystic granite, minor medium grained megacrystic granite and microgranite. Petrographic examination showed that the primary minerals in these undeformed granitic rocks are not alkali reactive. Faulting and related alteration and mineralization have produced potentially alkali reactive minerals including microcrystalline and strained quartz and fine phyllosilicates. Marginally deleterious and deleterious expansion is shown by the accelerated mortar bar tests. Although alkali reactive rocks are present in some quarries in Bukit Lagong, their volume is small. When blended with the undeformed granitic rocks, the aggregates produced are not expected to cause alkali-aggregate reaction in concrete.

 

Keywords: Alkali-aggregate reaction; cataclasite; granite aggregate

 

ABSTRAK

Kawasan Bukit Lagong merupakan sumber batuan agregat yang terpenting di Selangor. Kajian geologi telah dijalankan di empat kuari di kawasan Bukit Lagong dan kajian petrografi serta ujian pengembangan terpecut dilakukan untuk menilai potensi tindak balas alkali agregat untuk agregat granit. Granit megahablur berbutir kasar adalah batuan utama di kawasan kajian dan terdapat sedikit granit megahablur berbutir sederhana dan mikrogranit. Kajian petrografi menunjukkan bahawa mineral primer yang ada pada batuan granit yang tidak mengalami canggaan adalah tidak alkali reaktif. Sesar serta perubahan dan pemineralan yang berkaitan telah menghasilkan mineral yang mungkin alkali reaktif seperti kuarza keterikan, kuarza mikrohabluran dan filosilikat halus. Ujian batang lepa terpecut menunjukkan pengembangan pinggiran mudarat dan mudarat. Walaupun batuan alkali reaktif wujud dalam kuari di Bukit Lagong, isi padu batuan tersebut adalah kecil. Selepas dicampur dengan granit yang tidak mengalami canggaan, agregat yang dihasilkan tidak dijangka akan menyebabkan tindak balas alkali-agregat dalam konkrit.

 

Kata kunci: Agregat granit; kataklasit; tindak balas alkali agregat

REFERENCES

Anthony, M. 1991. Foreword. In Minerals, Metals and the Environment, Inst. Mining & Metall., Elsevier Applied Science, London.

ASTM (American Society for Testing Materials). 2004. Standard test method for potential alkali reactivity of aggregates (mortar-bar method). ASTM Designation C1260-04.

ASTM (American Society for Testing Materials). 1990. Standard test method for potential alkali reactivity of concrete aggregate combinations (mortar bar method). ASTM Designation C227-90.

Brodie, K., Fettes, D., Harte, B. & Schmid, R. 2007. Structural terms including fault rock terms. Recommendations by the IUGS Subcommission on the Systematics of Metamorphic Rocks. Web version of 01.02.07. www.bgs.ac.uk/scmr/home.html.

Chow, W.S. & Abdul Majit Sahat. 1990. Potential alkali-silica reactivity of tuffaceous rocks in the Pengerang area, Johor. Bulletin of the Geological Society of Malaysia 26: 97-108.

Cobbing, E.J. & Mallick, D.I.J. 1987. South-East Asia granite project. Field report for Peninsular Malaysia. British Geological Survey Overseas Director Report No. MP/87/19R.

Cobbing, E.J., Pitfield, P.E.J., Darbyshire, D.P.F. & Mallick, D.I.J. 1992. The granites of the southeast Asian Tin Belt. British Geological Survey Overseas Memoir 10: 369.

Ferraris, C.F. 1995. Alkali-silica reaction and high performance concrete. National Institute of Standards and Technology Report 5742. p. 20.

Gaskin, A.J., Jones, R.H. & Vivian, H.E. 1955. Studies in cement-aggregate reaction XXI. The reactivity of various forms of silica in relation to the expansion of mortar bars. Australian J. Applied Science 6: 78.

Gillott, J.E. 1975. Alkali-aggregate reactions in concrete. Engineering Geology 9: 303-326.

Gillot, J.E., Duncan, M.A.G. & Swenson, E.G. 1973. Alkali-aggregate reaction in Nova Scotia. IV. Characters of the reaction. Cement and Concrete Research 3: 521-535.

Hobbs, D.W. 1990. Alkali-silica reaction. In Standards for Aggregates, edited by Pike, D.C. New York: Ellis Horwood.

JMG (Minerals and Geoscience Department). 2010. Malaysian Mining Industry 2009. Minerals and Geoscience Department Malaysia, Ministry of Natural Resources and Environment.

Kerrick, D.M. & Hooton, R.D. 1992. ASR of concrete aggregate quarried from a fault zone: Results and petrographic interpretation of accelerated mortar bar test. Cement Concrete Research 22: 949-960.

Liew, T.C. 1983. Petrogenesis of the Peninsular Malaysian granitoid batholith. PhD. Thesis, Australia National University (unpublished).

McConnell, D., Mielenz, R.C., Holland, W.Y. & Greene, K.T. 1947. Cement-aggregate reaction in concrete. Journal of American Concrete Institute 44(2): 93-128.

Mustaza, M., Nurul Huda, R. & Wan Zulasmin, W.I. 2008. Pembangunan lestari kuari-kuari Bukit Lagong. Persidangan Tahunan Jabatan Mineral dan Geosains Malaysia 2008, Kota Bharu, Kelantan.

Ng, T.F. 1994. Microstructures of the deformed granites of eastern Kuala Lumpur Implications for mechanisms and temperatures of deformation. Bulletin of the Geological Society of Malaysia 35: 47-59.

Ng, T.F. 1997. Layered microgranite-pegmatite complexes of the Kuala Lumpur Granite, Peninsular Malaysia. Geological Society of Malaysia Warta Geologi 23: 129-138.

Ng, T.F. 2010. Microstructural characteristics of some alkali-aggregate reactive granites of Peninsular Malaysia. National Geoscience Conference 2010. 11-12 Jun 2010, Shah Alam. Geological Society of Malaysia Warta Geologi 36: 119-120.

Ng, T.F. & Yeap, E.B. 2007. Potential alkali-silica reaction in aggregate of deformed granite. Bulletin of the Geological Society of Malaysia 53: 81-88.

Oberholster, R.E. & Davies, G. 1986. An accelerated method for testing the potential alkali reactivity of siliceous aggregates. Cement and Concrete Research 16: 181-189.

West, G. 1991. A note on undulatory extinction of quartz in granite. Engineering Geology 24: 159-165.

Wigum, B.J. 1995. Examination of microstructural features of Norwegian cataclastic rocks and their use for predicting alkali-reactivity in concrete. Engineering Geology 40: 195-214.

Yeap, E.B. 1992. The mineralogical and petrological factors in the alkali-silica reactions in concrete. Bulletin of the Geological Society of Malaysia 31: 1-15.

 

*Corresponding author; email address: ntf@um.edu.my

 

 

previous