Sains Malaysiana 42(6)(2013): 793–799

 

Solvolytic Liquefaction of Oil Palm Empty Fruit Bunch (EFB) Fibres: Analysis of

Product Fractions Using FTIR and Pyrolysis-GCMS

(Pencecairan Solvolik Serabut Tandan Kosong Kelapa Sawit: Produk Pencirian melalui

FTIR dan Pirolisis-GCMS)

 

Fei Ling Pua*

Department of Mechanical and Manufacturing Engineering, Faculty of Engineering

Universiti Putra Malaysia, 43600 Serdang, Selangor, Malaysia

 

Fei Ling Pua*, Sarani Zakaria, Chin Hua Chia & Suet Pin Fan

School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia

43600 Bangi, Selangor, Malaysia

 

Thomas Rosenau, Antje Potthast & Falk Liebner

Department of Chemistry, University of Natural Resources and Life Sciences (BOKU)

Muthgasse 18, Vienna 1190, Austria

 

Received: 18 June 2012/Accepted: 17 September 2012

 

ABSTRACT

Oil palm empty fruit bunch (EFB) fibers were subjected to solvolytic liquefaction to convert into liquid products using ethylene glycol (EG) as a supporting agent. The process was carried out at 250?C for 60 min. The water-insoluble product fraction was exhaustively extracted with acetone (ASL fraction) to separate all less polar. FTIR and comparative analytical pyrolysis GC/MS of the parent EFB fiber and the ASL fraction confirmed the formation of larger amounts of long-chain lipophilic compounds under liquefaction conditions. Furthermore, a considerable amount of less polar thermal lignin degradation products were obtained comprising all of the three main lignin building blocks, i.e. 4-hydroxyphenyl- (P units), 4-hydroxy-3-methoxyphenyl- (G units) and 3,5-dimethoxy-4-hydroxyphenyl (S units) substituted compounds. 4-Prop-2-en-1-yl substituted phenolic compounds contributed mostly to the cumulated peak area of all lignin derived pyrolysis products obtained by analytical Curie point pyrolysis GC/MS at 600°C. The results of both instrumental-analytical methods confirm the formation of phenol and its derivatives, furan derivatives, organic acids, hydrocarbon, ester, benzene groups and alcohols.

 

Keywords: Ethylene glycol; FTIR; oil palm empty fruit bunch; pyrolysis-GCMS; solvolytic liquefaction

 

ABSTRAK

Tandan kosong kelapa sawit (EFB) telah ditukar kepada produk cecair dengan menggunakan proses pencecairan solvolitik dengan kahadiran agen penyokong, etilena glikol (EG). Proses telah dijalankan pada 250?C selama 60 min. Hasil pecahan yang tidak larut dalam air diekstrak oleh pelarut aseton (ASL) untuk memisahkan produk kurang kutub. Analisis FTIR dan pirolisis GC/MS ke atas fiber EFB dan hasil pecahan ASL telah mengesahkan pembentukan sebatian lipofilik rantai panjang. Tambahan pula, sejumlah hasil produk daripada degradasi terma lignin terbukti mengandungi ketiga-tiga komponen utama lignin iaitu: 4-hidroksifenil (unit-P), 4-hidroksi-3-metosifenil (unit-G) dan 3,5-dimetosi-4-hydrosifenil (unit-S) sebatian-sebatian serabut. Merujuk kepada keputusan analisis pirolisis GC/MS pada takat Curie 600°C, sebatian fenolik serabut, 4-prop-2-en-1-il merupakan penyumbang utama hasil produk pencecairan solvolitik. Kedua-dua keputusan analisis FTIR dan pirolisis GC/MS mengesahkan bahawa pencecairan solvolitik EFB telah membentuk asid karbosilik dan terbitan, terbitan furan, asid-asid organik, hidrokarbon, kumpulan benzena dan alkohol.

 

Kata kunci: Etilena glikol; FTIR; pencecairan solvolitik; pirolisis-GCMS; tandan kosong kelapa sawit

REFERENCES

Hamdan, A.B., Tarmizi, A.M. & Mohd, D.T. 1998. Empty fruit bunch mulching and nitrogen fertilizer amendment: The resultant effect on oil palm performance and soil properties. PORIM Bulletin Palm Oil Research Institute Malaysia.

Huber, G.W., Iborra, S. & Corma, A. 2006. Synthesis of transportation fuels from biomass: Chemistry, catalysts and engineering. Chemical Review 106: 4044 -4098.

Karagoz, S., Bhaskar, T., Muta, A. & Sakata, Y. 2005. Comparative studies of oil compositions produced from sawdust, rice husk, lignin and cellulose by hydrothermal treatment. Fuel 84: 875 -884.

Khor, K.H., Lim, K.O. & Zainal, Z.A. 2009. Characterization of bio-oil: A by-product from slow purolysis of oil palm empty fruit bunches. American Journal of Applied Science 6: 1647-1652.

Lim, L., Yao, Y., Yoshioka, M. & Shiraishi, N. 2004. Liquefaction mechanism of cellulose in the presence of phenol under acid catalysis. Carbohydrate Polymer 57: 123-129.

Liu, A., Park, Y., Huang, Z., Wang, B., Ankumah, R.O. & Biswas, P.K. 2006. Product identification and distribution from hydrothermal conversion of walnut shells. Energy Fuel 20: 446-454.

Liu, Z. & Zhang, F-S. 2008. Effects of various solvents on the liquefaction of biomass to produce fuels and chemical feedstocks. Energy Conversion and Management 49: 3498-3504.

Mazaheri, H., Lee, K.T., Bhatia, S. & Mohamed, A.R. 2010. Subcritical water liquefaction of oil palm fruit press fiber for the production of bio-oil: Effect of catalysts. Bioresources Technology 101: 745 -751.

Mohan, D., Pittman, C.U. Jr. & Steele, P.H. 2006. Pyrolysis of wood/biomass for bio-oil: A critical review. Energy Fuel 20: 848-889.

Qian, Y., Zuo, C., Tan, J. & He, J. 2007. Structural analysis of bio-oils from sub- and supercritical water liquefaction of woody biomass. Energy 32: 196-202.

Tsai, W.T., Lee, M.K. & Chang, Y.M. 2006. Fast pyrolysis of rice straw, sugarcane bagasse and coconut shell in an induction-heating reactor. Journal of Analytical and Applied Pyrolysis 76: 230-237.

 

 

*Corresponding author; email: feilingpua@yahoo.com

 

 

previous