Sains Malaysiana 42(6)(2013):
793–799
Solvolytic
Liquefaction of Oil Palm Empty Fruit Bunch (EFB) Fibres:
Analysis of
Product Fractions Using FTIR and Pyrolysis-GCMS
(Pencecairan Solvolik Serabut Tandan Kosong Kelapa Sawit: Produk
Pencirian melalui
FTIR dan Pirolisis-GCMS)
Fei Ling Pua*
Department of Mechanical and Manufacturing Engineering, Faculty
of Engineering
Universiti Putra Malaysia, 43600 Serdang, Selangor, Malaysia
Fei Ling Pua*, Sarani Zakaria, Chin Hua Chia & Suet Pin
Fan
School of Applied Physics, Faculty of Science and Technology,
Universiti Kebangsaan Malaysia
43600 Bangi, Selangor, Malaysia
Thomas
Rosenau, Antje Potthast & Falk Liebner
Department
of Chemistry, University of Natural Resources and Life Sciences (BOKU)
Muthgasse
18, Vienna 1190, Austria
Received:
18 June 2012/Accepted: 17 September 2012
ABSTRACT
Oil palm empty fruit bunch (EFB) fibers were subjected to solvolytic
liquefaction to convert into liquid products using ethylene glycol (EG)
as a supporting agent. The process was carried out at 250?C for 60 min. The
water-insoluble product fraction was exhaustively extracted with acetone (ASL fraction)
to separate all less polar. FTIR and comparative analytical pyrolysis GC/MS of
the parent EFB fiber and the ASL fraction confirmed the formation of larger
amounts of long-chain lipophilic compounds under liquefaction conditions.
Furthermore, a considerable amount of less polar thermal lignin degradation
products were obtained comprising all of the three main lignin building blocks,
i.e. 4-hydroxyphenyl- (P units), 4-hydroxy-3-methoxyphenyl- (G units) and
3,5-dimethoxy-4-hydroxyphenyl (S units) substituted compounds. 4-Prop-2-en-1-yl
substituted phenolic compounds contributed mostly to the cumulated peak area of
all lignin derived pyrolysis products obtained by analytical Curie point
pyrolysis GC/MS at 600°C. The results of both instrumental-analytical methods
confirm the formation of phenol and its derivatives, furan derivatives, organic
acids, hydrocarbon, ester, benzene groups and alcohols.
Keywords: Ethylene glycol; FTIR; oil palm empty fruit bunch; pyrolysis-GCMS;
solvolytic liquefaction
ABSTRAK
Tandan kosong kelapa sawit (EFB) telah ditukar kepada produk cecair
dengan menggunakan proses pencecairan solvolitik dengan kahadiran agen
penyokong, etilena glikol (EG). Proses telah dijalankan pada 250?C selama
60 min. Hasil pecahan yang tidak larut dalam air diekstrak oleh pelarut aseton
(ASL)
untuk memisahkan produk kurang kutub. Analisis FTIR dan
pirolisis GC/MS ke atas fiber EFB dan hasil pecahan ASL telah mengesahkan
pembentukan sebatian lipofilik rantai panjang. Tambahan pula, sejumlah
hasil produk daripada degradasi terma lignin terbukti mengandungi ketiga-tiga
komponen utama lignin iaitu: 4-hidroksifenil (unit-P), 4-hidroksi-3-metosifenil
(unit-G) dan 3,5-dimetosi-4-hydrosifenil (unit-S) sebatian-sebatian serabut. Merujuk kepada keputusan analisis pirolisis GC/MS pada takat Curie
600°C, sebatian fenolik serabut, 4-prop-2-en-1-il merupakan penyumbang utama
hasil produk pencecairan solvolitik. Kedua-dua keputusan analisis FTIR dan
pirolisis GC/MS mengesahkan bahawa pencecairan solvolitik EFB telah membentuk asid
karbosilik dan terbitan, terbitan furan, asid-asid organik, hidrokarbon,
kumpulan benzena dan alkohol.
Kata kunci: Etilena glikol; FTIR;
pencecairan solvolitik; pirolisis-GCMS; tandan kosong
kelapa sawit
REFERENCES
Hamdan, A.B., Tarmizi, A.M. & Mohd, D.T. 1998. Empty
fruit bunch mulching and nitrogen fertilizer amendment: The resultant effect on
oil palm performance and soil properties. PORIM Bulletin
Palm Oil Research Institute Malaysia.
Huber, G.W., Iborra, S. & Corma, A. 2006. Synthesis of
transportation fuels from biomass: Chemistry, catalysts and engineering. Chemical
Review 106: 4044 -4098.
Karagoz, S., Bhaskar, T., Muta, A.
& Sakata, Y. 2005. Comparative studies
of oil compositions produced from sawdust, rice husk, lignin and cellulose by
hydrothermal treatment. Fuel 84: 875 -884.
Khor, K.H., Lim, K.O. & Zainal, Z.A. 2009.
Characterization of bio-oil: A by-product from slow purolysis of oil palm empty
fruit bunches. American Journal of Applied Science 6: 1647-1652.
Lim, L., Yao, Y., Yoshioka, M. & Shiraishi, N. 2004. Liquefaction mechanism of cellulose in the presence of phenol under
acid catalysis. Carbohydrate Polymer 57: 123-129.
Liu, A., Park, Y., Huang, Z., Wang, B.,
Ankumah, R.O. & Biswas, P.K. 2006. Product identification and distribution from hydrothermal
conversion of walnut shells. Energy Fuel 20: 446-454.
Liu, Z. & Zhang, F-S. 2008. Effects of various solvents
on the liquefaction of biomass to produce fuels and chemical feedstocks. Energy
Conversion and Management 49: 3498-3504.
Mazaheri, H., Lee, K.T., Bhatia, S.
& Mohamed, A.R. 2010. Subcritical water liquefaction of oil palm fruit press fiber for the production
of bio-oil: Effect of catalysts. Bioresources Technology 101: 745 -751.
Mohan, D., Pittman, C.U. Jr. &
Steele, P.H. 2006. Pyrolysis of wood/biomass for bio-oil:
A critical review. Energy Fuel 20: 848-889.
Qian, Y., Zuo, C., Tan, J. & He, J.
2007. Structural analysis of bio-oils from sub-
and supercritical water liquefaction of woody biomass. Energy 32: 196-202.
Tsai, W.T., Lee, M.K. & Chang, Y.M. 2006. Fast pyrolysis of rice straw, sugarcane bagasse and coconut shell
in an induction-heating reactor. Journal of Analytical and Applied
Pyrolysis 76: 230-237.
*Corresponding
author; email: feilingpua@yahoo.com
|