Sains
Malaysiana 42(6)(2013): 837–844
Investigation
of Steady State Problems via Quarter Sweep Schemes
(Kajian Terhadap Masalah Berkeadaan Mantap Menggunakan Skema
Sapuan Suku)
Ng Yit Hoe*
& Mohammad Khatim Hasan
School of Information Technology, Faculty of
Information Science and Technology
Universiti Kebangsaan Malaysia, 43650 Bangi,
Selangor D.E. Malaysia
Received: 19 July 2012/Accepted: 14 November
2012
ABSTRACT
BSTRACT
Numerical application helps researchers in simulating various
problems and used for solving partial differential equation. Half sweep and
quarter sweep approach have been applied onto iterative method to gain
approximation solution. In this paper, the implementation of full sweep
successive over relaxation (FSSOR), half sweep successive
over relaxation (HSSOR) and quarter sweep successive
over relaxation (QSSOR) methods and full sweep
accelerated over relaxation (FSAOR), half sweep accelerated
over relaxation (HSAOR) and quarter sweep accelerated
over relaxation (QSAOR) for its numerical engines are
shown. QSSOR and QSAOR method was the fastest
among FSSOR, HSSOR, FSAOR and HSAOR methods. Additionally, QSAOR performance is more
accurate than QSSOR.
Keywords: Elliptic problem; iterative scheme; numerical
simulation; Poisson; quarter sweep approach
ABSTRAK
Aplikasi berangka membantu penyelidik dalam
mensimulasikan pelbagai masalah dan digunakan untuk menyelesaikan persamaan
terbitan separa. Pendekatan sapuan separuh dan sapuan suku telah digunakan ke atas
kaedah lelaran untuk mendapatkan penyelesaian penghampiran. Dalam kertas
ini, implementasi kaedah-kaedah pengenduran berlebihan berturut-turut sapuan
penuh (FSSOR), pengenduran berlebihan berturut-turut sapuan
separuh (HSSOR) dan pengenduran berlebihan berturut-turut sapuan
suku (QSSOR) dan pemecutan berlebihan berturut-turut sapuan
penuh (FSAOR), pemecutan berlebihan berturut-turut sapuan
separuh (HSAOR) dan pemecutan berlebihan berturut-turut sapuan
suku (QSAOR) untuk enjin berangka ditunjukkan. Kaedah QSSOR dan QSAOR adalah
terpantas dalam kalangan kaedah-kaedah FSSOR, HSSOR, FSAOR dan HSAOR. Di
samping itu, prestasi QSAOR adalah lebih tepat daripada QSSOR.
Kata kunci: Masalah eliptik; pendekatan sapuan
suku; poisson; simulasi berangka; skim lelaran
REFERENCES
Ali, N.H. & Evans, D.J. 2004. Preconditioned
rotated iterative methods in the solution of elliptic partial differential
equation. International Journal of Computer Mathematics 81(9):
1163-1174.
Ali, N.H. & Sam, T.L. 2006. On implementing
several krylov preconditioned iterative schemes on rotated grid. 2nd Annual Proceedings of the IMT-GT Regional Conference on
Mathematics, Statistics and Application.
Hadjidimos, A. 1978. Accelerated overrelaxation method. Mathematics
of Computation 32: 149-157.
Lee, S.C. 2007. Preconditioned 5 rotated scheme in solving the Poisson’s equation. 17th
Annual Proceedings of the Simposium Kebangsaan Sains Matematik pp.154-159.
Moussavi, S. 2009. One step closer to an optimal
two-parameter SOR method - Ageometric approach. Journal of
Mathematical Sciences 21(1): 56-64.
Othman, M., Rakhimov, S.I.
& Sulaiman, J. 2009. An AOR
four points modified explicit group iterative algorithms for solving 2D Poisson
equation. 5th Annual Proceedings of the Asian Mathematical
Conference pp. 276-279.
Sulaiman, J., Othman, M.
& Hasan, M.K. 2006. An optimal ordering strategy of the point iterative algorithm for
solving 2D convection-diffusion problem. Borneo
Science 18: 1-8.
Sulaiman, J., Othman, M.
& Hasan, M.K. 2008a. Half-sweep algebraic multigrid (HSAMG) method applied to diffusion equations in
modeling. Simulation and Optimization of Complex Processes,
Springer-Verlag, Berlin Heidelberg. pp.
547-556.
Sulaiman, J., Othman, M.
& Hasan, M.K. 2007. Red-black EDGSOR iterative method using triangle finite element
approximation for 2D poisson equations. LNCS 4707 Part III:
298-308.
Sulaiman, J., Saudi, A.,
Abdullah, M.H., Hasan, M.K. & Othman, M. 2008b. Quarter-sweep arithmetic mean
algorithm for water quality model, Proceeding International Symposium on Information
Technology 3: 1859-1863.
Wang, G., Wen, H., Li, L.
& Li, X. 2011. Convergence
of GAOR method for doubly diagonally dominant matrices. Journal of
Applied Mathematics and Computation 217: 7509-7514.
Young, D.M. 1950. Iterative
methods for solving partial difference equations of elliptic type, APh.D. Thesis of Historical Importance, Harvard University Cambrige. Mass (unpublished).
*Corresponding author; email: fido_ng87@yahoo.com
|