Sains Malaysiana 42(6)(2013):
875–880
Risk Measures and
Portfolio Construction in Different Economic Scenarios
(Pengukuran Risiko dan Penjanaan Portfolio dalam Senario Ekonomi
Berbeza)
Saiful Hafizah Jaaman*, Weng Hoe Lam & Zaidi Isa
Centre
for Modelling and Data Analysis (DELTA), School of Mathematical Sciences
Faculty
of Science and Technology, Universiti Kebangsaan Malaysia
43600
UKM Bangi, Selangor, Malaysia
Received:
18 May 2012/Accepted: 13 September 2012
ABSTRACT
This paper compared the composition and performance of portfolios
constructed by employing different risk measures utilizing the Malaysian share
market data in three diverse economic scenarios. The risk measures considered
were the mean-variance (MV) and their alternatives; the semi-variance
(SV),
mean absolute deviation (MAD) and conditional value at risk (CVAR).
The data were divided into three sub-periods representing the growth period in
the economy, financial crisis and the recovery period. The results of this
study showed different optimal portfolios’ performances and compositions for
the three economic periods. Nevertheless, among the risk models tested, CVAR(0.99)
model gave the highest portfolio skewness. High skewness means that the
probability of getting large negative returns is decreased. As a conclusion,
for the Malaysian stock market, the CVAR(0.99) model
is the most appropriate portfolio optimization model for downside risk aversion
investors in all three economic scenarios.
Keywords: Optimization; return; share market; skewness; variance
ABSTRAK
Kertas ini membandingkan komposisi dan prestasi
portfolio yang dibina menggunakan pengukuran risiko berlainan ke atas data
pasaran saham Malaysia dalam tiga senario ekonomi berbeza. Ukuran risiko yang
dipertimbangkan ialah min-varians (MV) dan alternatifnya; semi-varians (SV),
min sisihan mutlak (MAD) dan nilai bersyarat pada risiko (CVAR). Data dibahagi kepada tiga sub-tempoh yang mewakili tempoh
pertumbuhan ekonomi, krisis kewangan dan tempoh pemulihan. Keputusan kajian menunjukkan prestasi dan komposisi portfolio yang
optimum adalah berbeza bagi tiga tempoh ekonomi tersebut. Namun begitu,
daripada model risiko yang diuji, model CVAR(0.99)
memberikan kepencongan portfolio tertinggi. Kepencongan
tinggi bermakna kebarangkalian mendapat pulangan negatif yang besar
berkurangan. Kesimpulannya, untuk pasaran saham Malaysia, model CVAR(0.99)
merupakan model pengoptimuman portfolio yang paling sesuai untuk pelaburan
penghindaran risiko ke bawah dalam ketiga-tiga senario ekonomi.
Kata kunci: Kepencongan; pasaran saham;
pengoptimuman; pulangan; varians
REERENCES
Arditti, F.D. 1967. Risk and
the required return on equity. Journal of Finance 22: 19-36.
Bodie, Z., Kane, A. & Marcus, A. 2011. Investments
and Portfolio Management. 9th ed. New York:
McGraw-Hill.
Byrne,
P. & Lee, S. 2004. Different risk measures: Different portfolio
compositions? Journal of Property Investment & Finance 22(6):
501-511.
Chow,
K. & Denning, K.C. 1994. On variance and lower partial moment betas: The
equivalence of systematic risk measures. Journal of Business Finance and
Accounting 21: 231-241.
Chunhachinda,
P., Dandapani, K., Hamid, S. & Prakash A.J. 1997. Portfolio selection and
skewness: Evidence from international stock markets. Journal of Banking
& Finance 21: 143-167.
Elton, E.J., Gruber, M.J., Brown, S.J. & Goetzmann, W.N.
2007. Modern Portfolio Theory and Investment Analysis. 7th ed. New York: Wiley.
Fama,
E.F. 1965. Portfolio analysis in a stable Paretian market. Management Science 11: 404-419.
Feinstein,
C.D. & Thapa, M.N. 1993. Notes: Areformulation of a mean-absolute deviation
portfolio optimization model. Management Science 39(12): 1552-1553.
Grootveld,
H. & Hallerbach, W. 1999. Variance vs downside risk: Is there really that
much difference? European Journal of Operational Research 114: 304-319.
Jaaman,
S.H., Lam, W.H. & Isa, Z. 2011. Higher moment portfolio
management with downside risk. American Journal of Social and
Management Sciences 2(2): 220-224.
Kon,
S.J. 1984. Models of stock returns- a comparison. The Journal of Finance 39(1):
147-165.
Konno,
H. & Yamazaki, H. 1991. Mean-absolute deviation portfolio
optimization model and its applications to Tokyo Stock Market. Management
Science 37(5): 519-531.
Konno,
H. & Yamazaki, H. 2001. Portfolio optimization problem
under concave transaction costs and minimal transaction unit constraints. Mathematical Programming 89: 233-250.
Konno,
H., Waki, H. & Yuuki, A. 2002. Portfolio optimization
under lower partial risk measures. Asia-Pacific Financial Markets 9:
127-140.
Kraus,
A. & Litzenberger, R. 1976. Skewness preference and the
valuation of risky assets. Journal of Finance 21: 1085-1094.
Krokhmal,
P., Palmquist, J. & Uryasev, S. 2002. Portfolio
optimization with conditional value-at-risk objectives and constraints. Journal
of Risk 42(2): 124-129.
Lai,
T.Y. 1991. Portfolio selection with skewness: Amultiple-objective approach. Review of Quantitative Finance and Accounting 293-305.
Li,
X., Qin, Z. & Kar, S. 2010. Mean-variance-skewness model
for portfolio selection with fuzzy returns. European Journal of
Operational Research 202: 239-247.
Lima, A.E.B., Shanthikumarb, J.G. & Vahn, G-Y. 2011. Conditional value-at-risk in portfolio optimization: Coherent but
fragile. Operations Research Letter 39: 163-171.
Liu,
M. & Gao, Y. 2006. An algorithm for portfolio selection
in a frictional market. Applied Mathematics and Computation 182:
1629-1638.
Markowitz,
H. 1952. Portfolio selection. Journal of Finance 7(1): 77-91.
Markowitz,
H. 1959. Portfolio Selection: Efficient Diversification of Investments.
New York: John Wiley & Sons.
Markowitz,
H. 1993. Computation of mean-semivariance efficient sets by the critical line
algorithm. Annals of Operational Research 45: 307-317.
Prakash,
A.J., Chang, C. & Pactwa, T.E. 2003. Selecting a portfolio with skewness:
Recent evidence from US, European, and Latin American equity markets. Journal
of Banking and Finance 27: 1375-1390.
Rockafellar,
R.T. & Uryasev, S. 2000. Optimization of conditional
value-at-risk. Journal of Risk 2: 21-41.
Saiful
Hafizah Jaaman, Weng Hoe Lam & Zaidi Isa. 2011. Different downside risk
approaches in portfolio optimization. Journal of Quality Measurement and
Analysis 7(1): 77-84.
Samuelson,
P. 1970. The fundamental approximation theorem of portfolio analysis in terms
of means, variances, and higher moments. Review of Economic Studies 37:
537-542.
Simaan,
Y. 1997. Estimation risk in portfolio selection: The mean variance model versus
the mean absolute deviation model. Management Science 43(10): 1437-1446.
Szegö,
G. 2002. Measures of risk. Journal of Banking &
Finance 26: 1253-1272.
Tanaka,
H. & Guo, P. 1999. Portfolio selection based on upper and lower exponential
possibility distributions. European Journal of Operational Research 114:
115-126.
*Corresponding
author; email: shj@ukm.my
|