Sains Malaysiana 42(7)(2013): 881–891

 

Effects of Surfactant on Geotechnical Characteristics of Silty Soil

(Kesan SurfaktanTerhadap Ciri Geoteknik Tanah Berlodak)

 

Z.A. Rahman*, A.R. Sahibin, T. Lihan, W.M.R. Idris & M. Sakina

Pusat Pengajian Sains Sekitaran dan Sumber Alam, Fakulti Sains dan Teknologi

Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor D.E. Malaysia

 

Received: 18 May 2012/Accepted: 27 November 2012

 

ABSTRACT

Surfactants are often used as a cleaning agent for restoration of oil-contaminated soil. However the effect of surfactant on the geotechnical properties of soil is not clearly understood. In this study, the effects of surfactant on silty soil were investigated for consistency index, compaction, permeability and shear strength. Sodium dodecyl sulfate (SDS) was used in this study to prepare the surfactant-treated soil. Our results showed that the soil with added surfactant exhibited a decrease in liquid and plastic limit values. Maximum dry densities increased and optimum moisture contents decreased as contents of added surfactant were increased. The presence of surfactant assists the soil to achieve maximum density at lower water content. The addition of surfactant decreased the permeability of soil from 6.29×10-4 to 1.15×10-4 ms-1. The shear strength of soil with added surfactant was examined using the undrained unconsolidated triaxial tests. The results showed that the undrained shear strength, Cu was significantly affected, decreased from 319 kPa to 50 kPa for soil with 20% of added surfactant. The results of this study showed that the presence of surfactant in soil can modify the mechanical behaviour of the soil.

 

Keywords: Consistency index; geotechnical properties; residual soil; shear strength; surfactant

 

ABSTRAK

Surfaktan sering digunakan sebagai agen pembersih bagi membaik pulih tanah tercemar minyak. Walaupun begitu kesan surfaktan terhadap sifat geoteknik tanah tidak jelas. Dalam kertas ini, kesan surfaktan tehadap tanah berlodak dikaji berdasarkan indeks ketekalan, pemadatan, ketelapan dan kekuatan ricih. Natrium dodesil sulfat (SDS) telah digunakan dalam kajian ini untuk menyediakan tanah terawat surfaktan. Keputusan menunjukkan tanah yang ditambah surfaktan mempamerkan penurunan nilai-nilai had cecair dan plastik. Ketumpatan kering maksimum meningkat dan kandungan lembapan optimum menurun dengan peningkatan kandungan surfaktan. Kehadiran surfaktan membantu tanah untuk mencapai ketumpatan maksimum pada kandungan air yang lebih rendah. Penambahan surfaktan menurunkan ketelapan tanah daripada 6.29×10-4 ke 1.15×10-4 ms-1. Kekuatan ricih tanah yang ditambah surfaktan diuji menggunakan ujian tiga paksi tidak terkukuh tidak bersalir. Keputusan menunjukkan kekuatan ricih tidak bersalir, Cu adalah jelas dipengaruhi, menyusut daripada 319 kPa ke 50 kPa bagi tanah ditambah 20% surfaktan. Keputusan kajian ini menunjukkan bahawa kehadiran surfaktan dalam tanah boleh mengubah kelakuan mekanik tanah.

 

Kata kunci: Cirian geoteknik; indeks ketekalan; kekuatan ricih; tanah baki

 

REFERENCES

 

Acar, Y.B., Hamidon, A., Field, S.D. & Scott, L. 1985. The effect of organic fluids on hydraulic conductivity of compacted kaolinite. Hydraulic barriers in soils and rock. ASTM STP 874: 171-187.

Alloway, B.J. 1990. Heavy Metal in Soil. Glasgow: Blackie.

Anderson, D.C., Crawley, W. & Zabcik, J.D.1985. Effects of various liquids on clay soil: Bentonite slurry mixtures. Hydraulic barriers in soil and rock. ASTM STP 874: 93-103.

Bagchi, A.K., Al Rawas, A.A. & Al Barwani, A. 1996. Application of remote sensing to mapping of expansive soils and rocks in Oman. International Archives of Photogrammetry and Remote Sensing XXXI, Part B7: 31-35.

Bowders, J.J. & Daniel, D.E. 1987. Hydraulic conductivity of compacted clay to dilute organic chemicals. ASCE Journal of Geotechnical Engineering 113(12): 1432-1448.

British Standard Institution 1377, 1990a. Methods of Test for Soil for Civil Engineering Purposes-Part 2: Classification Tests. BS1377, London, ISBN: 0580178676, p. 68.

British Standard Institution 1377, 1990b. Methods of Test for Soil for Civil Engineering Purposes-Part 4: Compaction-Related Tests. BS1377, London, ISBN: 0580180700, p. 70.

British Standard Institution 1377, 1990c. Methods of Test for Soil for Civil Engineering Purposes-Part 5: Compressibility, Permeability and Durability Tests. BS1377, London, ISBN: 0580180301, p. 42.

British Standard Institution 1377, 1990d. Methods of Test for Soil for Civil Engineering Purposes-Part 7: Shear Strength Tests (Total Stress). BS1377, London, ISBN: 0580182649, p. 62.

Broderick , G.P. & Daniel, D.E. 1990. Stabilizing compacted clay against chemical attack. ASCE Journal of Geotechnical Engineering 116(10): 1549-1567.

Brooks, R.R. 1987. Serpentinite and its Vegetation. London: Croom Helm Ltd.

Cheah, P.S., Reible, D., Valsaraj, K.T., Constant, D., Walsh, W. & Thibodeaux, L.J. 1998. Simulation of soil washing with surfactants. Journal of Hazardous Materials 59: 107-122.

Craig, R.F. 1995. Soil Mechanics. 5th ed. London: Chapman & Hall. p. 427.

Ducreux, J., Bavi`ere, M., Monin, N., Le Thiez, P., Bocard, C., De Vals, B., Setier, J.C., Dubarry, J.L. & Perez, A. 1997. Field application of an in situ remediation process based on surfactant-aided drainage. Proceedings of 4thof International In-Situ and on Site Bioremediation Symposium, April 28 - May 1. 2: 559-564.

Garnier, J., Quantin, C., Guimaraes, E., Garg, V.K, Martins, E.S. & Becquer, T. 2009. Understanding the genesis of ultramafic soils and catena dynamics in Niquelandia, Brazil. Geoderma 151(3-4): 204-214.

Harwell, J.H., Sabatini, D.A. & Knox, R.C. 1999. Surfactants for groundwater remediation. Colloids and Surface A: Physicochemical Engineering Aspects 151: 255-268.

Henry, E.J. & Smith, J.E. 2003. Surfactant-induced flow phenomena in the vadose zone: A review of data and numerical modeling. Vadose Zone Journal 2: 154-167.

Hueckel, T., Kaczmarek, M. & Caramuscio, P. 1997. Theoretical assessment of fabric and permeability changes in clays affected by organic contaminants. Canadian Geotechnical Journal 34: 588-603.

Hudson, J.B.C., Massarani, G., Biscaia, Jr. E.C. & SantAnna, Jr. G.L. 2009. Remediation of sandy soils using surfactant solutions and foams. Journal of Hazardous Materials 164: 1325-1334.

Iturbe, R., Flores, C., Chavez, C., Gonzalez, A. & Torres, L.G. 2004. In situ flushing of contaminated soils from a refinery: Organic compounds and metal removals. Remediation 14: 141-152.

Keong, E.B. 2002. Chemical characteristic and mineralogy of clayey serpentine soil and graphite schist on Kuala Pilah, Negeri Sembilan. BSc Thesis, Universiti Kebangsaan Malaysia (unpublished).

Kuhlman, M.I. & Greenfield, T.M. 1999. Simplified soil washing process for a variety of soils. Journal of Hazardous Materials 66: 31-45.

Lee, D-H., Cody, R.D., Kim, D-J. & Choic, S. 2002. Effect of soil texture on surfactant-based remediation of hydrophobic organic-contaminated soil. Environment International 27: 681-688.

Lee, D.H., Chang, H.W. & Cody, R.D. 2004. Synergism effect of mixed surfactant solutions in remediation of soil contaminated with PCE. Geoscience Journal 8: 319-323.

Li, J., Smith, J.A. & Winquist, A.S. 1996. Permeability of earthen liners containing organo bentonite to water and two organicliquids. Environmental Science and Technology 30(10): 3089-3093.

Lo, I.M.C., Mak, R.K.M. & Lee, S.C.H. 1997. Modified clays for waste containment and pollutant attenuation. ASCE Journal of Environmental Engineering 123(1): 25-32.

Martel, R. & Gélinas, P.J. 1996. Surfactant solution developed for NAPL recovery in contaminated aquifers. Ground Water 34(1): 143-154.

Oostindie, K., Dekker, L.W., Wesseling, J.G. & Ritsema, C.J. 2011. Improvement of water movement in an undulating sandy soil prone to water repellency. Vadose Zone Journal 10: 262-269.

Oostrom, M., Hofstee, C., Walker, R.C. & Dane, J.H. 1999. Movement and remediation of trichloroethylene in a saturated, heterogeneous porous medium 2. Pump-and-treat and surfactant flushing. Journal of Contaminant Hydrology 37(1-2): 179-197.

Park, J., Vipulanadan, C., Kim, J.W. & Myoung, H. & Oh, M.H. 2006. Effect of surfactants and electrolyte solutions on the properties of soil. Environmental Geology 49: 977-989.

Parker, F.J., Benefield, L.D. & Nelson, M.M. 1986. Effects of organic fluids on clay permeability. Proceedings of 41st Industrial Waste Conference, May 13-15, Purdue University. pp. 283-292.

Rahman, Z.A., Hamzah, U. & Ahmad, N. 2010. Geotechnical characteristics of oil-contaminated granitic and metasedimentary soils. Asian Journal of Applied Sciences 3(2): 237-249.

Ramsburg, C.A. & Pennell, K.D. 2002. Density-modified displacement for DNAPL source zone remediation: Density conversion and recovery in heterogeneous aquifer cells. Environmental Science and Technology 36: 3176-3187.

Rothmel, R.K., Peters, R.W., St. Martin, E. & Deflaun, M.F. 1998. Surfactant foam/biodegradation of in situ treatment of TCED NAPLs. Environmental Science and Technology 32: 1667-1675.

Sahibin, A.R., Wan Mohd Razi, I., Zulfahmi, A.R., Kadderi, M.D., Tukimat, L., Azan, H., Shahrilnizam, Y. & Kuan, L.H. 2009. Kandungan logam berat terpilih dalam tanih ultrabes dan mengkudu (Morinda citrifolia) dari Kuala Pilah Negeri Sembilan, Malaysia. Sains Malaysiana 38(5): 637-644.

Sai, J.O. & Anderson, D.C. 1991. Long-term effect of an aqueous landfill leachate on the permeability of a compacted clay liner. Hazard Waste Hazard Materials 8(4): 303-312.

Salehian, E., Khodadadi, A. & Hosseini, B. 2012. Remediation of diesel contaminated soil using surfactant column study. American Journal of Environmental Sciences 8(4): 352-359.

Torres, L.G., Climent, M., Saquelares, J., Bandala, R., Urquiza, G. & Iturbe, R. 2007. Characterization and treatability of a contaminated soil from an oil exploration zone. International Journal of Environmental Science and Technology 4(3): 311-322.

Uppot, J.O. & Stephenson, R.W. 1989. Permeability of clays under organic permeants. ASCE J. Geotechnical Engineering 115(2): 115-131.

Van der Merwe, D.H. 1964. The weathering of some basic igneous rocks and their engineering properties. The Civil Engineer in South Africa: 213-222.

Yeh, K.C. & Young, C.C. 2003. Effects of soil fines and surfactant sorption on contaminant reduction of coarse fractions during soil washing. Journal of Environmental Science and Health, Part A 38(11): 2697-2709.

 

 

*Corresponding author; email: fahmirina@gmail.com