Sains Malaysiana 42(7)(2013): 881–891
Effects of Surfactant on Geotechnical Characteristics of
Silty Soil
(Kesan SurfaktanTerhadap Ciri Geoteknik Tanah Berlodak)
Z.A. Rahman*, A.R. Sahibin, T. Lihan, W.M.R. Idris
& M. Sakina
Pusat Pengajian Sains Sekitaran dan
Sumber Alam, Fakulti Sains dan Teknologi
Universiti Kebangsaan Malaysia, 43600
Bangi, Selangor D.E. Malaysia
Received: 18 May 2012/Accepted: 27 November 2012
ABSTRACT
Surfactants are often used as a cleaning agent for restoration of oil-contaminated
soil. However the effect of surfactant on the geotechnical properties of soil
is not clearly understood. In this study, the effects of surfactant on silty
soil were investigated for consistency index, compaction, permeability and
shear strength. Sodium dodecyl sulfate (SDS) was used in this study to prepare
the surfactant-treated soil. Our results showed that the soil with added
surfactant exhibited a decrease in liquid and plastic limit values. Maximum dry
densities increased and optimum moisture contents decreased as contents of
added surfactant were increased. The presence of surfactant assists the soil to
achieve maximum density at lower water content. The addition of surfactant
decreased the permeability of soil from 6.29×10-4 to
1.15×10-4 ms-1. The shear strength of soil with
added surfactant was examined using the undrained unconsolidated triaxial
tests. The results showed that the undrained shear strength, Cu was
significantly affected, decreased from 319 kPa to 50 kPa for soil with 20% of
added surfactant. The results of this study showed that the presence of
surfactant in soil can modify the mechanical behaviour
of the soil.
Keywords: Consistency index; geotechnical properties; residual
soil; shear strength; surfactant
ABSTRAK
Surfaktan sering digunakan sebagai agen
pembersih bagi membaik pulih tanah tercemar minyak. Walaupun begitu kesan
surfaktan terhadap sifat geoteknik tanah tidak jelas. Dalam
kertas ini, kesan surfaktan tehadap tanah berlodak dikaji berdasarkan indeks
ketekalan, pemadatan, ketelapan dan kekuatan ricih. Natrium
dodesil sulfat (SDS) telah digunakan dalam kajian ini untuk menyediakan tanah
terawat surfaktan. Keputusan menunjukkan tanah yang ditambah surfaktan
mempamerkan penurunan nilai-nilai had cecair dan plastik. Ketumpatan
kering maksimum meningkat dan kandungan lembapan optimum menurun dengan
peningkatan kandungan surfaktan. Kehadiran surfaktan
membantu tanah untuk mencapai ketumpatan maksimum pada kandungan air yang lebih
rendah. Penambahan surfaktan menurunkan ketelapan
tanah daripada 6.29×10-4 ke 1.15×10-4 ms-1. Kekuatan ricih tanah yang ditambah surfaktan diuji
menggunakan ujian tiga paksi tidak terkukuh tidak bersalir. Keputusan
menunjukkan kekuatan ricih tidak bersalir, Cu adalah
jelas dipengaruhi, menyusut daripada 319 kPa ke 50 kPa bagi tanah ditambah 20%
surfaktan. Keputusan kajian ini menunjukkan bahawa kehadiran
surfaktan dalam tanah boleh mengubah kelakuan mekanik tanah.
Kata kunci:
Cirian geoteknik; indeks ketekalan; kekuatan ricih; tanah baki
REFERENCES
Acar, Y.B., Hamidon, A.,
Field, S.D. & Scott, L. 1985. The effect of organic fluids on hydraulic
conductivity of compacted kaolinite. Hydraulic
barriers in soils and rock. ASTM STP 874: 171-187.
Alloway, B.J. 1990. Heavy
Metal in Soil. Glasgow: Blackie.
Anderson, D.C., Crawley, W. & Zabcik,
J.D.1985. Effects of various liquids on clay soil: Bentonite slurry mixtures. Hydraulic barriers in soil and rock. ASTM STP 874:
93-103.
Bagchi, A.K., Al Rawas, A.A. & Al Barwani,
A. 1996. Application of remote sensing to mapping of
expansive soils and rocks in Oman. International Archives of
Photogrammetry and Remote Sensing XXXI, Part B7: 31-35.
Bowders, J.J. & Daniel,
D.E. 1987. Hydraulic conductivity of compacted clay to dilute
organic chemicals. ASCE Journal of Geotechnical Engineering 113(12):
1432-1448.
British Standard Institution 1377, 1990a. Methods of Test for Soil for Civil
Engineering Purposes-Part 2: Classification Tests. BS1377, London, ISBN:
0580178676, p. 68.
British Standard Institution 1377,
1990b. Methods of Test for Soil for Civil
Engineering Purposes-Part 4: Compaction-Related Tests. BS1377, London, ISBN:
0580180700, p. 70.
British Standard Institution 1377,
1990c. Methods of Test for Soil for Civil
Engineering Purposes-Part 5: Compressibility, Permeability and Durability
Tests. BS1377, London, ISBN: 0580180301, p. 42.
British Standard Institution 1377,
1990d. Methods of Test for Soil for Civil
Engineering Purposes-Part 7: Shear Strength Tests (Total Stress). BS1377,
London, ISBN: 0580182649, p. 62.
Broderick , G.P. & Daniel, D.E. 1990. Stabilizing compacted clay
against chemical attack. ASCE Journal of Geotechnical Engineering 116(10):
1549-1567.
Brooks, R.R. 1987. Serpentinite and its Vegetation.
London: Croom Helm Ltd.
Cheah, P.S., Reible, D., Valsaraj,
K.T., Constant, D., Walsh, W. & Thibodeaux, L.J. 1998. Simulation of soil washing with
surfactants. Journal of Hazardous Materials 59: 107-122.
Craig, R.F. 1995. Soil Mechanics. 5th ed. London: Chapman & Hall. p. 427.
Ducreux, J., Bavi`ere, M., Monin, N., Le Thiez, P., Bocard,
C., De Vals, B., Setier, J.C., Dubarry, J.L. & Perez, A. 1997. Field
application of an in situ remediation process based on surfactant-aided
drainage. Proceedings of 4thof International In-Situ and
on Site Bioremediation Symposium, April 28 - May 1. 2:
559-564.
Garnier, J., Quantin, C., Guimaraes,
E., Garg, V.K, Martins, E.S. & Becquer, T. 2009. Understanding the genesis of ultramafic soils and catena
dynamics in Niquelandia, Brazil. Geoderma 151(3-4): 204-214.
Harwell, J.H., Sabatini, D.A. & Knox, R.C. 1999. Surfactants for groundwater remediation. Colloids and
Surface A: Physicochemical Engineering Aspects 151: 255-268.
Henry, E.J. & Smith, J.E. 2003. Surfactant-induced flow
phenomena in the vadose zone: A review of data and numerical modeling. Vadose
Zone Journal 2: 154-167.
Hueckel, T., Kaczmarek, M. & Caramuscio, P. 1997.
Theoretical assessment of fabric and permeability changes in clays affected by
organic contaminants. Canadian Geotechnical Journal 34: 588-603.
Hudson, J.B.C., Massarani, G., Biscaia, Jr. E.C. &
SantAnna, Jr. G.L. 2009. Remediation of sandy soils using surfactant solutions
and foams. Journal of Hazardous Materials 164: 1325-1334.
Iturbe, R., Flores, C., Chavez, C.,
Gonzalez, A. & Torres, L.G. 2004. In
situ flushing of contaminated soils from a refinery: Organic compounds and
metal removals. Remediation 14: 141-152.
Keong, E.B. 2002. Chemical characteristic
and mineralogy of clayey serpentine soil and graphite schist on Kuala Pilah,
Negeri Sembilan. BSc Thesis, Universiti Kebangsaan Malaysia
(unpublished).
Kuhlman, M.I. & Greenfield, T.M. 1999. Simplified soil washing process for a variety of soils. Journal of Hazardous Materials 66: 31-45.
Lee, D-H., Cody, R.D., Kim, D-J.
& Choic, S. 2002. Effect of soil texture on
surfactant-based remediation of hydrophobic organic-contaminated soil. Environment
International 27: 681-688.
Lee, D.H., Chang, H.W. & Cody, R.D.
2004. Synergism effect of mixed surfactant
solutions in remediation of soil contaminated with PCE. Geoscience Journal 8:
319-323.
Li, J., Smith, J.A. & Winquist,
A.S. 1996. Permeability of
earthen liners containing organo bentonite to water and two organicliquids. Environmental Science and Technology 30(10): 3089-3093.
Lo, I.M.C., Mak, R.K.M. & Lee,
S.C.H. 1997. Modified clays for waste containment
and pollutant attenuation. ASCE Journal of Environmental Engineering 123(1):
25-32.
Martel, R. & Gélinas, P.J. 1996. Surfactant solution
developed for NAPL recovery in contaminated aquifers. Ground Water 34(1):
143-154.
Oostindie, K., Dekker, L.W., Wesseling, J.G. & Ritsema,
C.J. 2011. Improvement of water movement in an undulating sandy soil prone to
water repellency. Vadose Zone Journal 10: 262-269.
Oostrom, M., Hofstee, C., Walker, R.C.
& Dane, J.H. 1999. Movement
and remediation of trichloroethylene in a saturated, heterogeneous porous
medium 2. Pump-and-treat and surfactant flushing. Journal of Contaminant Hydrology 37(1-2): 179-197.
Park, J., Vipulanadan, C., Kim, J.W.
& Myoung, H. & Oh, M.H. 2006. Effect of surfactants and electrolyte solutions on the properties
of soil. Environmental Geology 49: 977-989.
Parker, F.J., Benefield, L.D. &
Nelson, M.M. 1986. Effects of organic
fluids on clay permeability. Proceedings of 41st Industrial
Waste Conference, May 13-15, Purdue University. pp.
283-292.
Rahman, Z.A., Hamzah, U. & Ahmad, N. 2010. Geotechnical characteristics of oil-contaminated granitic and
metasedimentary soils. Asian Journal of Applied Sciences 3(2): 237-249.
Ramsburg, C.A. & Pennell, K.D. 2002. Density-modified
displacement for DNAPL source zone remediation: Density conversion and recovery
in heterogeneous aquifer cells. Environmental Science and Technology 36:
3176-3187.
Rothmel, R.K., Peters, R.W., St. Martin, E. & Deflaun,
M.F. 1998. Surfactant foam/biodegradation of in situ treatment
of TCED NAPLs. Environmental Science and Technology 32:
1667-1675.
Sahibin, A.R., Wan Mohd Razi, I., Zulfahmi, A.R., Kadderi,
M.D., Tukimat, L., Azan, H., Shahrilnizam, Y. & Kuan, L.H. 2009. Kandungan logam berat terpilih dalam tanih ultrabes dan mengkudu (Morinda
citrifolia) dari Kuala Pilah Negeri Sembilan, Malaysia. Sains
Malaysiana 38(5): 637-644.
Sai, J.O. & Anderson, D.C. 1991. Long-term
effect of an aqueous landfill leachate on the permeability of a compacted clay
liner. Hazard Waste Hazard Materials 8(4): 303-312.
Salehian, E., Khodadadi, A. &
Hosseini, B. 2012. Remediation of diesel contaminated
soil using surfactant column study. American Journal of Environmental
Sciences 8(4): 352-359.
Torres, L.G., Climent, M., Saquelares,
J., Bandala, R., Urquiza, G. & Iturbe, R. 2007. Characterization and treatability of a
contaminated soil from an oil exploration zone. International Journal
of Environmental Science and Technology 4(3): 311-322.
Uppot, J.O. & Stephenson, R.W. 1989. Permeability
of clays under organic permeants. ASCE J. Geotechnical Engineering 115(2):
115-131.
Van der Merwe, D.H. 1964. The weathering of some basic igneous rocks and their engineering
properties. The Civil Engineer in South Africa: 213-222.
Yeh, K.C. & Young,
C.C. 2003. Effects of soil fines and surfactant sorption on
contaminant reduction of coarse fractions during soil washing. Journal
of Environmental Science and Health, Part A 38(11): 2697-2709.
*Corresponding
author; email: fahmirina@gmail.com