Sains Malaysiana 42(7)(2013): 955–959
Topology of Electron Density of
Cadmium Telluride Determined from
Relief and Contour Plots
(Topologi Ketumpatan Elektron Kadmium Telurida daripada Lakaran Timbul dan Lakaran Kontur)
A.P. Othman* & G.A. Gopir
School of Applied Physics, Faculty
of Science and Technology, Universiti Kebangsaan Malaysia
43600 Bangi, Selangor, D.E. Malaysia
Received: 13 June 2012/Accepted:
15 November 2012
ABSTRACT
The topology of the electron density
yields a faithful and a reliable mapping of the concepts of atoms, molecular
structure, bonds and structure, besides providing the basis for a theory of
structural stability. In quantum mechanics, and in particular quantum
chemistry, the electron density is a measure of the probability of an electron
occupying an infinitesimal element of space surrounding any given point.
Contour plots of electron density distribution of cadmiun telluride (CdTe) were obtained using the density
functional theory (DFT) method and were used as the basis to qualitatively
study the bond, structure and stability of the molecule when it is in bulk. We
looked at the way the electron density, ρ of CdTe defines the gradient field and hence the bonding type. We identified the bond
paths that coincide with the contours of electron sharing. These bond paths indicatedv that the molecule was slightly covalent. Our
topological analysis led us to conclude that CdTe was
an n-type semiconductor with covalent bond and slight ionic character.
Keywords: Bonding; DFT; electron density;
molecular structure; topology
ABSTRAK
Topologi ketumpatan elektron memberikan maklumat yang sahih dan pemetaan yang baik bagi menerangkan konsep atom, struktur molekul, ikatan dan struktur selain daripada memberikan asas kepada teori kestabilan struktur. Dalam mekanik kuantum, khususnya kimia kuantum, ketumpatan elektron memberikan kiraan keberangkalian sesuatu elektron menghuni satu ruang terhingga,
di sekeliling sesuatu titik. Lakaran kontour taburan ketumpatan elektron kadmium telurid telah didapati dengan menggunakan kaedah teori ketumpatan fungsian (DFT) dan telah diguna sebagai asas untuk mengkaji ikatan, struktur dan kestabilan molekul dalam keadaan pukal. Penyelidikan ke atas taburan ketumpatan, ρ CdTe yang membentuk medan kecerunan membolehkan kita menentukan jenis ikatan. Kami mengenal pasti laluan ikatan antara atom Cd dan Te yang memerihalkan perkongsian elektron. Laluan ikatan ini menandakan molekul tersebut memiliki ikatan kovalen yang lemah. Analisis topologi merumuskan CdTe sememangnya semikonduktor jenis-n yang memiliki ikatan kovalen dengan sedikit ikatan ionik.
Kata kunci: DFT; ikatan; ketumpatan elektron; struktur molekul; topologi
REFERENCES
Ayers,
P.W. & Parr, R.G. 2003. Sufficient condition for
monotonic electron density decay in many-electron systems. International
Journal of Quantum Chemistry 95(6): 877-885.
Bader,
W. & Beddall, P.M. 1972. A
topological analysis of the experimental electron density in racemic. J.
Chem. Phys. 56: 3320-3329.
Bader,
R.F.W. 1995. Topology of Electron Density and Open Quantum Systems. In Density Functional Theory, edited by Gross, E.K.U. & Dreizler, R.M. New York: Plenium Press. pp. 237-272.
Bader,
R.F.W. 1990. Atom in Molecules – A Quantum Theory. Oxford:
Oxford University Press.
Blaha, P.,
Schwarz, K., Madsen, G., Kvasnicka, D. & Luitz, J. 2001. WEIN2k An Augmented Plane Wave Plus Local
Orbitals Program for Calculating Crystal Properties. Austria: Vienna
University of Technology.
Cottenier, S. 2009. Relativistic
effect in solid state DFT calculation (and how to do
it in WIEN2k). Belgium: Ghent University.
Gordon,
H.A., Tristan, J.V.F., Tristan, F. & Gordon, A. 1999. SI
Chemical Data. 4th ed. New York:
John Wiley.
Lieb, E.H. 1983. Density functionals for coulomb systems. International Journal of Quantum Chemistry 24: 243-277.
Madsen,
G.K.H., Blaha, P., Schwarz, K., Sjőstedt,
E. & Nordstrőm, L. 2001. Phys.
Rev. B 64: 195134-195144.
Othman, A.P., Gopir, A.K. & Hamizah Basri. 2012. DFT applications in characterizing electronic
properties of cadmium telluride with relativistic effect. Advanced Materials
Research 501: 357-361.
Perdew, J.P. & Wang, Y.
1992. Accurate and simple analytic representation of the
electron-gas Phys. Rev. B 45: 13244-13249.
Perdew,
J.P., Burke, K. & Emzerhof, M. 1996. Generalized gradient
approximation made simple. Phys. Rev. Lett. 77: 3865-3868.
Walter,
J.P. & Cohen, M.L. 1971. Pseudopotential calculations of electronic charge densities in seven semiconductors. Physical Review B 4(6): 1877-1892.
*Corresponding author; email: puaad@ukm.my
|