Sains Malaysiana 42(7)(2013): 967–974

 

Sintesis dan Kawalan Morfologi Struktur-Nano TiO2 Menggunakan Kaedah Hidroterma untuk Aplikasi sebagai Elektrod Sel Suria Sensitif Pewarna

(Synthesis and Morphology Control of TiO2 Nanostructures via Hydrothermal Method

for Applications as Electrodes in Dye-Sensitized Solar Cells)

 

 

An’amt Mohamed Noor*

Jabatan Sains Bumi, Fakulti Agro Industri Dan Sumber Asli, Universiti Malaysia Kelantan

Kampus Jeli, Beg Berkunci No. 100, 17600 Jeli, Kelantan, Malaysia

 

Huang Nay Ming & Lim Hong Ngee

Solid State Physics Research Group, Department of Physics, Faculty of Science University of Malaya, 50603 Kuala Lumpur, Malaysia

 

Shahidan Radiman, Sapizah Rahim, Shahrul Izwan Ahmad & Siti Aisyah Shamsudin

Program Sains Nuklear, Pusat Pengajian Fizik Gunaan, Fakulti Sains dan Teknologi

Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, D.E. Malaysia

 

Mohd Ambar Yarmo

Pusat Pengajian Sains Kimia dan Teknologi Makanan, Fakulti Sains dan Teknologi

Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, D.E. Malaysia

 

Mohd Shaiful Sajab

Pusat Pengajian Sains Bahan, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia

43600 Bangi, Selangor, D.E. Malaysia

 

Received: 21 February 2012/Accepted: 23 January 2013

 

ABSTRAK

Struktur-nano TiO2 dengan pelbagai saiz dan bentuk telah disintesis melalui kaedah hidrotermal menggunakan serbuk nanozarah TiO2 sebagai prekursor. Sistem hidrotermal yang mudah, murah dan bebas templet pada suhu rawatan 180ºC, pengaruh medium alkali dengan penambahan NaOH dan KOH ke atas saiz, morfologi dan sifat fotovoltaik struktur-nano TiO2 telah dikaji. Sampel telah diperincikan oleh mikroskopi elektron transmisi (TEM), analisis penyebaran tenaga sinar-x (EDAX) manakala keupayaan fotovoltaik sel suria sensitif pewarna (DSSC) diukur menggunakan Gamry Potentiostat Series G-300. Hasil kajian dengan menggunakan agen alkali yang berlainan (NaOH dan KOH) jelas mempengaruhi morfologi TiO2 dan sel suria sensitif pewarna yang terdiri daripada struktur nanorod TiO2 menunjukkan keupayaan terbaik dengan voltan litar terbuka (Voc) sebanyak 416.8 mV, ketumpatan arus litar terbuka (Jsc) sebanyak 0.169 mA/cm2 dan kecekapan penukaran (η) sebanyak 0.0232% di bawah iluminasi lampu xenon AM 1.5.

 

Kata kunci: Hidroterma; nanokeping; nanorod; nanotiub; nanowayar

 

ABSTRACT

Nanostructured TiO2 with different sizes and shapes were synthesized through the hydrothermal method using TiO2 nanoparticles powder as the precursor. Hydrothermal system that is easy, inexpensive and free-templates at 180ºC temperature treatment, the influence of alkaline medium with the addition of NaOH and KOH on the size, morphology and photovoltaic properties of TiO2 nanostructures have been studied. Samples were characterized by transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDAX) while the ability of the dye sensitized solar cells (DSSC) were measured using Potentiostat Gamry Series G-300. The study by using different alkaline agent (NaOH and KOH) clearly influence the morphology of TiO2 and the dye sensitized solar cells consisting of TiO2 nanorod structure shows the best capability with an open circuit voltage (Voc) of 416.8 mV, a short circuit current density (Jsc) of 0.169 mA/cm2 and a conversion efficiency (η) of 0.0232% under AM 1.5 xenon lamp illumination.

 

Keywords: Hydrothermal; nanorods; nanosheets; nanotubes; nanowires

REFERENCES

An’amt, M.N., Radiman, S., Huang, N.M., Yarmo, M.A., Ariyanto, N.P., Lim, H.N. & Muhamad, M.R. 2010. Sol-gel hydrothermal synthesis of bismuth-TiO2 nanocubes for dye-sensitized solar cell. Ceramics International 36: 2215-2220.

Attar, A.S., Ghamsari, M.S., Hajiesmaeilbaigi, F., Mirdamadi, S., Katagiri, K. & Koumoto, K. 2009. Sol-gel template synthesis and characterization of aligned anatase-TiO2 nanorod arrays with different diameter. Materials Chemistry and Physics 113: 856-860.

Bae, E. & Ohno, T. 2009. Exposed crystal surface-controlled rutile TiO2 nanorods prepared by hydrothermal treatment in the presence of poly(vinyl pyrrolidone). Applied Catalysis B: Environmental 91: 634-639.

Bwana, N.N. 2009. Comparison of the performances of dye-sensitized solar cells based on different TiO2 electrode nanostructures. Journal of Nanoparticle Research 11: 1917-1923.

Centi, G. & Perathoner, S. 2007. Nano-architecture and reactivity of Titania catalytic materials. Quasi-1D nanostructures. Catalysis 20: 367-402.

Chen, J.S. & Lou, X.W. 2009. Anatase TiO2 nanokeping: An ideal host structure for fast and efficient lithium insertion/extraction. Electrochemistry Communications 11(12): 2332-2335.

Huang, E.Y., Hsu, Y.C., Chen, J.G., Suryanarayanan, V., Lee, K.M. & HO, K.C. 2006. The effects of hydrothermal temperature and thickness of TiO2 film on the performance of a dye-sensitized solar cell. Solar Energy Materials and solar cells 90: 2391-2397

Lee, K. M., Suryanarayanan, V. & Ho, K.C. 2007. A study on the electron transport properties of TiO2 electrodes in dye-sensitized solar cells. Solar Energy Materials and Solar Cells 91: 1416-1420.

Li, Q., Zhang, J., Liu, B., Li, M., Yu, S., Wang, L., Li, Z., Liu, D., Hou, Y., Zou, Y., Zou, B., Cui, T. & Zou, G. 2008. Synthesis and electrochemical properties of TiO2-B@C core-shell nanoribbons. Crystal Growth and Design 8: 1812-1814.

Lu, C.H., Wu, W.H. & Kale, R.B. 2008. Microemulsion-mediated hydrothermal synthesis of photocatalytic TiO2 powders. Journal of Hazardous Materials 154: 649-654.

Nag, M., Basak, P. & Manorama, S.V. 2007. Low-temperature hydrothermal synthesis of phase-pure rutile titania nanocrystals: Time temperature tuning of morphology and photocatalytic activity. Materials Research Bulletin 42: 1691-1704.

Oh, J.K., Lee, J.K., Kim, S.J. & Park, K.W. 2009. Synthesis of phase- and shape-controlled TiO2 nanoparticles via hydrothermal process. Journal of Industrial and Engineering Chemistry 15: 270-274.

Pan, K., Zhang, Q., Wang, Q., Liu, Z., Wang, D., Li, J. & Bai, Y. 2007. The photoelectrochemical properties of dye sensitized solar cells made with TiO2 nanoribbons and nanoroads. Thin Solid Films 515: 4085-4091.

Prado, A.G.S. & Costa, L.L. 2009. Photocatalytic decouloration of malachite green dye by application of TiO2 nanotubes. Journal of Hazardous Materials 169: 297-301.

Prasad, K., Pinjari, D.V., Pandit, A.B. & Mhaske, S.T. 2010. Phase transformation of nanostructured titanium dioxide from anatase-to-rutile via combined ultrasound assisted sol-gel technique. Ultrasonics Sonochemistry 17: 409-415.

Qamar, M., Yoon, C.R., Oh, H.J. & Kim, S.J. 2006. The effect of synthesis conditions on the formation of titanats nanotubes. Journal of the Korean Physical Society 49: 1493-1496.

Qu, J., Gao, X.P., Li, G.R., Jiang, Q.W. & Yan, T.Y. 2009. Structure transformation and photoelectrochemical properties of TiO2 nanomaterials calcined from titanat nanotubes. Journal of Physical Chemistry C 113: 3359-3363.

Quintana, M., Edvision, T., Hugfeldt, A. & Boschloo, G. 2007. Comparison of dye - sensitized ZnO and TiO2 solar cells: Studies of charge transport and carrier lifetime. Journal of Physical Chemistry C 111: 1035-1041.

Rana, S., Rawat, J. & Misra, R.D.K. 2005. Anti-microbial active composite nanoparticles with magnetic core and photocatalytic shell: TiO2-NiFe2O4 biomaterial system. Acta Biomaterialia 1: 691-703.

Sikhwivhilu, L.M., Sinha Ray, S. & Coville, N.J. 2009. Influence of bases on hydrothermal synthesis of titanat nanostructures.  Applied Physics A: Materials Science and Processing 94: 963-973.

Suzuki, Y., Pavasupree, S., Yoshikawa, S. & Kawahata, R. 2007. Direct synthesis of an anatase-TiO2 nanofiber/nanoparticle composite powder from natural rutile. Physica Status Solidi (A) Applications and Materials 204: 1757-1761.

Vasquez, J., Lozano, H., Lavayen, V., Lira-Cantu, M., Gomez-Romero, P., Ana, M.A.S., Benavente, E. & Gonzalez, G. 2009. High-Yield preparation of titanium dioxide nanostructures by hydrothermal conditions. Journal of Nanoscience and Nanotechnology 9: 1103-1107.

Wang, B., Shi, Y. & Xue, D. 2007. Large aspect ratio titanat nanowire prepared by monodispersed titania submicron sphere via simple wet-chemical reactions. Journal of Solid State Chemistry 180: 1028-1037.

Wang, D., Zhou, F., Liu, Y. & Liu, W. 2008. Synthesis and characterization of anatase TiO2 nanotubes with uniform diameter from titanium powder. Materials Letters 62: 1819-1822.

Wang, D., Yu, B., Zhou, F., Wang, C. & Liu, W. 2009. Synthesis and characterization of anatase TiO2, nanotubes and their use in dye-sensitized solar cells. Materials Chemistry and Physies 113: 602-606.

Yuan, Z.Y. & Su, B.L. 2004. Titanium oxide nanotubes, nanofibers and nanowires. Colloids and Surfaces A: Physicochemical and Engineering Aspects 241: 173-183.

 

 

*Corresponding author; email: anamt_1003@yahoo.com

 

 

previous