Sains Malaysiana 42(7)(2013):
967–974
Sintesis dan
Kawalan Morfologi Struktur-Nano TiO2 Menggunakan Kaedah Hidroterma untuk Aplikasi sebagai Elektrod Sel
Suria Sensitif Pewarna
(Synthesis and Morphology Control of TiO2 Nanostructures via
Hydrothermal Method
for Applications as Electrodes in Dye-Sensitized Solar Cells)
An’amt Mohamed Noor*
Jabatan Sains Bumi, Fakulti Agro Industri Dan Sumber Asli, Universiti
Malaysia Kelantan
Kampus Jeli, Beg Berkunci No. 100, 17600 Jeli, Kelantan, Malaysia
Huang Nay Ming & Lim Hong Ngee
Solid State Physics Research Group, Department of Physics, Faculty
of Science University of Malaya, 50603 Kuala Lumpur, Malaysia
Shahidan
Radiman, Sapizah Rahim, Shahrul Izwan Ahmad & Siti Aisyah Shamsudin
Program
Sains Nuklear, Pusat Pengajian Fizik Gunaan, Fakulti Sains dan Teknologi
Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, D.E. Malaysia
Mohd Ambar Yarmo
Pusat Pengajian Sains Kimia dan Teknologi Makanan, Fakulti
Sains dan Teknologi
Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, D.E. Malaysia
Mohd Shaiful Sajab
Pusat Pengajian Sains Bahan, Fakulti Sains dan Teknologi, Universiti
Kebangsaan Malaysia
43600 Bangi, Selangor, D.E. Malaysia
Received: 21 February 2012/Accepted: 23 January 2013
ABSTRAK
Struktur-nano TiO2 dengan pelbagai saiz dan
bentuk telah disintesis melalui kaedah hidrotermal menggunakan serbuk nanozarah
TiO2 sebagai
prekursor. Sistem hidrotermal yang
mudah, murah dan bebas templet pada suhu rawatan 180ºC, pengaruh medium alkali
dengan penambahan NaOH dan KOH ke atas saiz, morfologi dan sifat
fotovoltaik struktur-nano TiO2 telah dikaji. Sampel telah
diperincikan oleh mikroskopi elektron transmisi (TEM), analisis penyebaran
tenaga sinar-x (EDAX) manakala keupayaan fotovoltaik sel suria
sensitif pewarna (DSSC) diukur menggunakan Gamry Potentiostat
Series G-300. Hasil kajian dengan menggunakan agen alkali yang berlainan
(NaOH dan KOH)
jelas mempengaruhi morfologi TiO2 dan sel suria sensitif pewarna yang terdiri
daripada struktur nanorod TiO2 menunjukkan keupayaan terbaik dengan voltan
litar terbuka (Voc) sebanyak 416.8 mV,
ketumpatan arus litar terbuka (Jsc) sebanyak 0.169 mA/cm2 dan kecekapan penukaran
(η) sebanyak 0.0232% di bawah iluminasi lampu xenon AM 1.5.
Kata kunci: Hidroterma; nanokeping; nanorod; nanotiub; nanowayar
ABSTRACT
Nanostructured TiO2 with different sizes and shapes were
synthesized through the hydrothermal method using TiO2 nanoparticles powder as
the precursor. Hydrothermal system that is easy, inexpensive and free-templates
at 180ºC temperature treatment, the influence of alkaline medium with the
addition of NaOH and KOH on the size, morphology and photovoltaic
properties of TiO2 nanostructures have been studied. Samples
were characterized by transmission electron microscopy (TEM), energy dispersive
X-ray analysis (EDAX) while the ability of the dye sensitized
solar cells (DSSC) were measured using Potentiostat Gamry Series G-300.
The study by using different alkaline agent (NaOH and KOH) clearly influence
the morphology of TiO2 and the dye sensitized solar cells consisting
of TiO2 nanorod
structure shows the best capability with an open circuit voltage (Voc) of 416.8 mV, a short circuit current
density (Jsc)
of 0.169 mA/cm2 and a conversion efficiency (η)
of 0.0232% under AM 1.5 xenon lamp illumination.
Keywords: Hydrothermal; nanorods; nanosheets;
nanotubes; nanowires
REFERENCES
An’amt, M.N., Radiman, S., Huang, N.M., Yarmo,
M.A., Ariyanto, N.P., Lim, H.N. & Muhamad, M.R. 2010. Sol-gel
hydrothermal synthesis of bismuth-TiO2 nanocubes for
dye-sensitized solar cell. Ceramics International 36: 2215-2220.
Attar, A.S., Ghamsari,
M.S., Hajiesmaeilbaigi, F., Mirdamadi, S., Katagiri, K. & Koumoto, K. 2009. Sol-gel template synthesis
and characterization of aligned anatase-TiO2 nanorod arrays with
different diameter. Materials Chemistry and Physics 113: 856-860.
Bae, E. & Ohno, T.
2009. Exposed crystal
surface-controlled rutile TiO2 nanorods prepared by
hydrothermal treatment in the presence of poly(vinyl
pyrrolidone). Applied Catalysis B: Environmental 91: 634-639.
Bwana, N.N. 2009. Comparison of the performances of
dye-sensitized solar cells based on different TiO2 electrode
nanostructures. Journal of Nanoparticle Research 11: 1917-1923.
Centi, G. & Perathoner, S. 2007. Nano-architecture and reactivity of Titania catalytic materials. Quasi-1D nanostructures. Catalysis 20: 367-402.
Chen, J.S. & Lou, X.W. 2009. Anatase TiO2 nanokeping:
An ideal host structure for fast and efficient lithium insertion/extraction. Electrochemistry
Communications 11(12): 2332-2335.
Huang, E.Y., Hsu, Y.C., Chen, J.G.,
Suryanarayanan, V., Lee, K.M. & HO, K.C. 2006. The effects of hydrothermal
temperature and thickness of TiO2 film on the performance of a dye-sensitized
solar cell. Solar Energy Materials and solar cells 90: 2391-2397
Lee, K. M., Suryanarayanan,
V. & Ho, K.C. 2007. A study on the electron transport properties of TiO2 electrodes
in dye-sensitized solar cells. Solar Energy Materials and Solar Cells 91: 1416-1420.
Li, Q., Zhang, J., Liu, B., Li, M., Yu, S.,
Wang, L., Li, Z., Liu, D., Hou, Y., Zou, Y., Zou, B., Cui, T. & Zou, G.
2008. Synthesis and electrochemical properties of TiO2-B@C
core-shell nanoribbons. Crystal Growth and Design 8: 1812-1814.
Lu, C.H., Wu, W.H. &
Kale, R.B. 2008. Microemulsion-mediated
hydrothermal synthesis of photocatalytic TiO2 powders. Journal
of Hazardous Materials 154: 649-654.
Nag, M., Basak, P. & Manorama, S.V. 2007.
Low-temperature hydrothermal synthesis of phase-pure rutile titania nanocrystals: Time temperature tuning of morphology and photocatalytic
activity. Materials Research Bulletin 42: 1691-1704.
Oh, J.K., Lee, J.K., Kim,
S.J. & Park, K.W. 2009. Synthesis of phase- and shape-controlled TiO2 nanoparticles
via hydrothermal process. Journal of Industrial and Engineering
Chemistry 15: 270-274.
Pan, K., Zhang, Q., Wang,
Q., Liu, Z., Wang, D., Li, J. & Bai, Y. 2007. The photoelectrochemical properties of dye
sensitized solar cells made with TiO2 nanoribbons and
nanoroads. Thin Solid Films 515: 4085-4091.
Prado, A.G.S. & Costa, L.L. 2009. Photocatalytic decouloration of malachite green dye by application
of TiO2 nanotubes. Journal of Hazardous
Materials 169: 297-301.
Prasad, K., Pinjari, D.V., Pandit, A.B. &
Mhaske, S.T. 2010. Phase transformation of nanostructured titanium dioxide from
anatase-to-rutile via combined ultrasound assisted sol-gel technique. Ultrasonics
Sonochemistry 17: 409-415.
Qamar, M., Yoon, C.R., Oh, H.J. & Kim, S.J. 2006. The effect of synthesis
conditions on the formation of titanats nanotubes. Journal of the
Korean Physical Society 49: 1493-1496.
Qu, J., Gao, X.P., Li, G.R., Jiang, Q.W. & Yan, T.Y.
2009. Structure transformation and photoelectrochemical properties of TiO2 nanomaterials
calcined from titanat nanotubes. Journal of Physical Chemistry C 113:
3359-3363.
Quintana, M., Edvision, T., Hugfeldt,
A. & Boschloo, G. 2007. Comparison of dye - sensitized ZnO and TiO2 solar cells: Studies of
charge transport and carrier lifetime. Journal of Physical Chemistry C 111:
1035-1041.
Rana, S., Rawat, J. & Misra, R.D.K.
2005. Anti-microbial active composite
nanoparticles with magnetic core and photocatalytic shell: TiO2-NiFe2O4 biomaterial
system. Acta Biomaterialia 1: 691-703.
Sikhwivhilu, L.M., Sinha Ray, S. & Coville, N.J. 2009. Influence of bases on hydrothermal synthesis of titanat
nanostructures. Applied
Physics A: Materials Science and Processing 94: 963-973.
Suzuki, Y., Pavasupree, S., Yoshikawa,
S. & Kawahata, R. 2007. Direct synthesis of an anatase-TiO2 nanofiber/nanoparticle
composite powder from natural rutile. Physica Status Solidi (A)
Applications and Materials 204: 1757-1761.
Vasquez, J., Lozano, H., Lavayen, V.,
Lira-Cantu, M., Gomez-Romero, P., Ana, M.A.S., Benavente, E. & Gonzalez, G.
2009. High-Yield
preparation of titanium dioxide nanostructures by hydrothermal conditions. Journal of Nanoscience and Nanotechnology 9: 1103-1107.
Wang, B., Shi, Y. & Xue, D. 2007. Large aspect ratio titanat nanowire prepared by
monodispersed titania submicron sphere via simple
wet-chemical reactions. Journal of Solid State Chemistry 180: 1028-1037.
Wang, D., Zhou, F., Liu, Y. & Liu,
W. 2008. Synthesis and characterization
of anatase TiO2 nanotubes with uniform diameter from titanium
powder. Materials Letters 62: 1819-1822.
Wang, D., Yu, B., Zhou, F., Wang, C.
& Liu, W. 2009. Synthesis
and characterization of anatase TiO2, nanotubes and
their use in dye-sensitized solar cells. Materials Chemistry and
Physies 113: 602-606.
Yuan, Z.Y. & Su, B.L. 2004. Titanium
oxide nanotubes, nanofibers and nanowires. Colloids and Surfaces A:
Physicochemical and Engineering Aspects 241: 173-183.
*Corresponding
author; email: anamt_1003@yahoo.com
|