Sains Malaysiana 42(7)(2013): 999–1002

 

Instability to Nonlinear Vector Differential Equations of Fourth Order

with Constant Delay

(Ketakstabilan Persamaan Pembeza Vektor Tak Linear Keempat dengan Tundaan Malar)

 

 

Cemİl Tunç*

Department of Mathematics, Faculty of Sciences, Yüzüncü Y?l University

65080, VanTurkey

 

Received: 11 May 2012/Accepted: 27 November 2012

 

ABSTRACT

We consider a vector nonlinear differential equation of fourth order with a constant delay. We establish new sufficient conditions, which guarantee the instability of the zero solution of that equation. An example is given to illustrate the theoretical analysis made in this paper.

 

Keywords: Delay; fourth order; instability; vector differential equation

 

ABSTRAK

Kami telah pertimbangkan persamaan pembeza vektor taklinear tertib keempat dengan tundaan malar. Kami tunjukkan keadaan mencukupi yang baru yang menjamin ketakstabilan penyelesaian sifar persamaan tersebut. Satu contoh diberikan untuk menunjukkan analisis teori yang dilakukan dalam kertas ini.

 

Kata kunci: Kestabilan; tundaan; persamaan pembeza vektor; tertib ke empat

REFERENCES

Bellman, R. 1997. Introduction to Matrix Analysis. Reprint of the 2nd (1970) ed. Classics in Applied Mathematics, 19. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.

Ezeilo, J.O.C. 1978. An instability theorem for a certain fourth order differential equation. Bull. London Math. Soc. 10(2): 184

Ezeilo, J.O.C. 1979. Extension of certain instability theorems for some fourth and fifth order differential equations. Atti. Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Natur. 8(66): 239-242.

Ezeilo, J.O.C. 2000. Further instability theorems for some fourth order differential equations. J. Nigerian Mathematical Society 19: 1-7.

Krasovskii, N.N. 1955. On conditions of inversion of A.M. Lyapunov’s theorems on instability for stationary systems of differential equations (Russian). Dokl. Akad. Nauk. SSSR (N.S.) 101: 17-20.

LaSalle, J. & Lefschetz, S. 1961. Stability by Liapunov’s direct method, with applications. Mathematics in Science and Engineering, Vol. 4. New York-London: Academic Press.

Sadek, A.I. 2003. Instability results for certain systems of fourth and fifth order differential equations. Appl. Math. Comput. 145(2-3): 541-549.

Sun, W.J. & Hou, X. 1999. New results about instability of some fourth and fifth order nonlinear systems. (Chinese) J. Xinjiang Univ. Natur. Sci. 16(4): 14-17.

Tunç, C. 2004. An instability theorem for a certain vector differential equation of the fourth order. JIPAM. J. Inequal. Pure Appl. Math. 5(1): 1-5.

Tunç, C. 2006. A further instability result for a certain vector differential equation of fourth order. Int. J. Math. Game Theory Algebra 15(5): 489-495.

Tunç, C. 2009. Instability of solutions for certain nonlinear vector differential equations of fourth order. Nonlinear Oscil. (N. Y.) 12(1): 120-129.

Tunç, C. 2010. On the instability of the solutions of some nonlinear vector differential equations of fourth order. Miskolc Math. Notes 11(2): 191-200.

Tunç, C. 2011a. Recent advances on instability of solutions of fourth and fifth order delay differential equations with some open problems. World Scientific Review, World Scientific Series on Nonlinear Science Series B (Book Series) 9: 105-116.

Tunç, C. 2011b. On the instability of solutions of nonlinear delay differential equations of fourth and fifth order. Sains Malaysiana40(12): 1455-1459.

Tunç, C. 2011c. On the instability of solutions of a nonlinear vector differential equation of fourth order. Ann. Differential Equations 27(4): 418-421.

 

 

*Corresponding author; email: cemtunc@yahoo.com

 

 

 

previous