Sains Malaysiana 42(7)(2013):
999–1002
Instability to Nonlinear Vector Differential Equations of
Fourth Order
with Constant Delay
(Ketakstabilan Persamaan Pembeza Vektor Tak Linear Keempat dengan Tundaan Malar)
Cemİl Tunç*
Department of Mathematics, Faculty of Sciences, Yüzüncü Y?l University
65080, VanTurkey
Received: 11 May 2012/Accepted: 27 November 2012
ABSTRACT
We consider a vector nonlinear differential equation of fourth
order with a constant delay. We establish new sufficient conditions, which
guarantee the instability of the zero solution of that equation. An example is
given to illustrate the theoretical analysis made in this paper.
Keywords: Delay; fourth
order; instability; vector differential equation
ABSTRAK
Kami telah pertimbangkan persamaan pembeza vektor taklinear tertib keempat dengan tundaan malar. Kami tunjukkan keadaan mencukupi yang baru yang menjamin ketakstabilan penyelesaian sifar persamaan tersebut. Satu contoh diberikan untuk menunjukkan analisis teori yang dilakukan dalam kertas ini.
Kata kunci: Kestabilan; tundaan; persamaan pembeza vektor; tertib ke empat
REFERENCES
Bellman, R. 1997. Introduction to Matrix
Analysis. Reprint of the 2nd (1970) ed. Classics in
Applied Mathematics, 19. Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, PA.
Ezeilo, J.O.C. 1978. An instability theorem for a
certain fourth order differential equation. Bull. London Math. Soc. 10(2): 184
Ezeilo, J.O.C. 1979. Extension of
certain instability theorems for some fourth and fifth order differential
equations. Atti. Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Natur.
8(66): 239-242.
Ezeilo, J.O.C. 2000. Further instability theorems for
some fourth order differential equations. J. Nigerian Mathematical
Society 19: 1-7.
Krasovskii, N.N. 1955. On conditions of
inversion of A.M. Lyapunov’s theorems on instability
for stationary systems of differential equations (Russian). Dokl. Akad. Nauk. SSSR (N.S.) 101: 17-20.
LaSalle, J. & Lefschetz,
S. 1961. Stability by Liapunov’s direct method, with applications. Mathematics in
Science and Engineering, Vol. 4. New York-London: Academic Press.
Sadek, A.I. 2003. Instability results for certain
systems of fourth and fifth order differential equations. Appl. Math. Comput. 145(2-3): 541-549.
Sun, W.J. & Hou, X. 1999. New results about instability of some fourth
and fifth order nonlinear systems. (Chinese) J. Xinjiang Univ. Natur. Sci. 16(4): 14-17.
Tunç, C. 2004. An instability theorem for a
certain vector differential equation of the fourth order. JIPAM. J. Inequal. Pure Appl. Math. 5(1):
1-5.
Tunç, C. 2006. A further instability result
for a certain vector differential equation of fourth order. Int. J. Math. Game Theory Algebra 15(5):
489-495.
Tunç, C. 2009. Instability of solutions for
certain nonlinear vector differential equations of fourth order. Nonlinear Oscil. (N. Y.) 12(1):
120-129.
Tunç, C. 2010. On the instability of the
solutions of some nonlinear vector differential equations of fourth order. Miskolc Math. Notes 11(2): 191-200.
Tunç, C. 2011a. Recent advances on instability of solutions of
fourth and fifth order delay differential equations with some open problems. World
Scientific Review, World Scientific Series on Nonlinear Science Series B (Book
Series) 9: 105-116.
Tunç, C. 2011b. On the instability of
solutions of nonlinear delay differential equations of fourth and fifth order. Sains Malaysiana40(12):
1455-1459.
Tunç, C. 2011c. On the instability of
solutions of a nonlinear vector differential equation of fourth order. Ann. Differential Equations 27(4): 418-421.
*Corresponding author; email: cemtunc@yahoo.com
|